基于RRT算法实现四旋翼无人机的安全和最优能量轨迹规划

127 篇文章 ¥59.90 ¥99.00
本文介绍了一种利用RRT算法为四旋翼无人机规划安全且节能飞行路径的方法。通过空间网格划分和优化算法,确保无人机在避开障碍物的同时,实现最低能量消耗的飞行,适用于多种应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于RRT算法实现四旋翼无人机的安全和最优能量轨迹规划

近年来,无人机技术得到了快速的发展,并被广泛应用于航空、军事、测绘等领域。然而,随着无人机应用场景的不断增多,其安全性问题也变得越来越重要。因此,如何在保证无人机安全的前提下,实现其最优能量轨迹规划是一个亟待解决的问题。

针对该问题,本文提出了一种基于Rapidly-exploring Random Tree (RRT)算法实现的四旋翼无人机安全和最优能量轨迹规划方法。该方法通过将空间划分为网格,使用优化算法求解每个网格中无人机的最优飞行路径,从而实现了无人机的安全飞行。

以下是实现该方法的matlab代码:

% 起始点和目标点
start = [0, 0, 0];
goal = [10, 10, 10];

% 障碍物集合
obstacles = [
    3,4,5,6,7,8,9,10,11,12,13,14,15,16,17;
    6,6,6,6,6,6,6,6,6,6,6,6,6,6,6;
    0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
    ;
    8,9,10,11,12,13,14,15;
    4,4,4,4,4,4,4,4;
    0,0,0,0,0,0,0,0
];

% 空间分辨率
resolution = 0.1;

% 安全距离和最大速度
safetyDistance = 1;
maxSpeed = 2;

% 执行RRT规划
[tree, path] = rrt(start, goa
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值