Leetcode 1125. 最小的必要团队 Python

博客围绕最小覆盖问题(NP - hard问题)展开,提到贪心算法可计算近似解,若求完美解有两种常用思路:一是状态压缩下的动态规划,用数的比特位代替众多状态;二是DFS + 记忆化搜索,考虑人员选或不选两种情况,动态规划也是一种记忆化搜索。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
这道题属于是最小覆盖问题,属于NP-hard问题,可以通过贪心算法计算近似解。

但要求出完美解,有以下两种常用的思路。

1.状态压缩下的动态规划

状态实在是太多了,所以要用一个数的比特位来代替。
代码:

class Solution(object):
    def smallestSufficientTeam(self, req_skills, people):
        """
        :type req_skills: List[str]
        :type people: List[List[str]]
        :rtype: List[int]
        """
        #对数据进行编码
        map_dict = {name: (1 << offset) for offset, name in enumerate(req_skills)}
        group = [0 for i in range(len(people))]
        #
        for idx, skills in enumerate(people):
            skill_num = 0
            for k in skills:
                # print(k)
                skill_num += map_dict[k]
            group[idx] = skill_num

        # print(group)
        print(sum(map_dict.values()))
        dp = [[] for i in range(sum(map_dict.values()) + 1)]

        for val in range(len(dp)):
            if val > 0 and dp[val] == []:
                continue
            for person, skill in enumerate(group):
                if skill == 0:
                    continue
                combine = skill | val
                if len(dp[combine]) > len(dp[val]) + 1 or not dp[combine]:
                    dp[combine] = dp[val] + [person]

        return dp[-1]

2.DFS+记忆化搜索

对于每个人员来说,只有选或不选两种情况,于是我们可以考虑记忆化搜索。其实动态规划方法也是在做一种记忆化的搜索。
代码略。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值