nn神经网络
functional当中卷积的使用
import torch
import torch.nn.functional as F
#数据
input=torch.tensor([[1,2,0,3,1],
[0,1,2,3,1],
[1,2,1,0,0],
[5,2,3,1,1],
[2,1,0,1,1]])
#卷积核
kernel=torch.tensor([[1,2,1],
[0,1,0],
[2,1,0]])
# minibatch,in_channels,iH,iW
input=torch.reshape(input,(1,1,5,5))
kernel=torch.reshape(kernel,(1,1,3,3))
#stride表示步长,每一次卷积核向周围移动的距离,padding表示在输入长度周边填充几圈0
output=F.conv2d(input,kernel,stride=1)
print(output)
output2=F.conv2d(input,kernel,stride=2)
print(output2)
output3=F.conv2d(input,kernel,stride=1,padding=1)
print(output3)
- 输入:
input = (x, y, 高度, 宽度)
,x
是批次大小,y
是输入通道数,高度
和宽度
是图像的空间尺寸。 - 卷积核:
kernel = (a, b, 高度, 宽度)
,a
是卷积核的数量,b
是卷积核的输入通道数,高度
和宽度
是卷积核的尺寸。 - 输出:(x, a, 输出高度, 输出宽度)这是输出的尺寸
nn.Module
-
__init__(self)
:这个方法用于定义模型的层或者各个子模块。通常你会在这个方法中实例化神经网络的不同层(如卷积层、全连接层等)。 -
forward(self, input)
:这是你需要自己实现的方法,定义了数据从输入到输出的流动过程。在这里,输入数据通过网络的不同层,最终产生输出。PyTorch 会根据你定义的forward
方法自动构建计算图。
#一个简单的模型示例
import torch
from torch import nn
class Tudui(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input):
output = input + 1 # 前向传播操作,简单地将输入加1
return output
# 创建模型实例
tudui = Tudui()
# 创建一个张量,作为输入
x = torch.tensor(1.0)
# 调用模型,将输入传递给前向传播方法
output = tudui(x)
# 打印输出
print(output)
nn当中的conv2d
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset=torchvision.datasets.CIFAR10("dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)
dataloader=DataLoader(dataset,batch_size=64)
class Tudui(nn.Module):
def __init__(self):
super(Tudui,self).__init__()
#定义一个卷积层大小,in_channels就是输入张量的通道数,out_channels就是输出张量的通道数
#kernel_size表示卷积核的大小,例如3表示卷积核是一个3*3的张量,stride表示步长
#这里定义的一个卷积层中的卷积核(或称为滤波器)是会 随机初始化 的
#然后在训练过程中通过反向传播进行更新和优化。
self.conv1=Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)
def forward(self,x):
x=self.conv1(x)
return x
tudui=Tudui()
writer=SummaryWriter("logs")
step=0
for data in dataloader:
imgs,targets=data
output=tudui(imgs)
writer.add_images("input",imgs,step)
output=torch.reshape(output,(-1,3,30,30))
writer.add_images("output",output,step)
step=step+1
writer.close()
最大池化maxpool,通过分块取最大值来提取张量的特征从而空间加快训练
import torch
import torchvision.datasets
from torch import nn
from torch.nn import MaxPool2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset=torchvision.datasets.CIFAR10("dataset",train=False,download=True,transform=torchvision.transforms.ToTensor())
dataloader=DataLoader(dataset,batch_size=64)
class Tudui(nn.Module):
def __init__(self):
super(Tudui,self).__init__()
#窗口的大小,ceil_mode取True表示会保留边缘不足窗口大小的部分,false会舍弃
#窗口每次移动自身大小步长
self.maxpool1=MaxPool2d(kernel_size=3,ceil_mode=True)
def forward(self,input):
output=self.maxpool1(input)
return output
tudui=Tudui()
writer=SummaryWriter("logs_maxpool")
step=0
for data in dataloader:
imgs,targets=data
writer.add_images("input",imgs,step)
output=tudui(imgs)
writer.add_images("output",output,step)
step=step+1
writer.close()
relu和Sigmoid
relu:对张量数据取max(0,x)
sigmoid:1/(1+e^(-x)),将数据压缩到(0,1)之间
import torch
import torchvision.datasets
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
input=torch.tensor([[1,-0.5],
[-1,3]])
input=torch.reshape(input,(-1,1,2,2))
dataset=torchvision.datasets.CIFAR10("dataset",train=False,download=True,transform=torchvision.transforms.ToTensor())
dataloader=DataLoader(dataset,batch_size=64)
class Tudui(nn.Module):
def __init__(self):
super(Tudui,self).__init__()
self.relu1=ReLU()
self.sigmoid1=Sigmoid()
def forward(self,input):
output=self.sigmoid1(input)
return output
tudui=Tudui()
writer=SummaryWriter("logs_relu")
step=0
for data in dataloader:
imgs,target=data
writer.add_images("input",imgs,global_step=step)
output=tudui(imgs)
writer.add_images("output",output,global_step=step)
step=step+1
writer.close()