机器学习专栏(15):工业级数据准备流水线——从缺失值到特征缩放的终极实践

目录

导言:当数据成为算法的"预制菜"

一、缺失值处理:数据修复的三大法则

1.1 智能填充策略选择

1.2 填充策略对比矩阵

二、类别变量编码:从文本到算法的语言翻译

2.1 编码方式深度对比

三、特征缩放:让算法公平竞技的奥林匹克

3.1 标准化 vs 归一化实战

3.2 算法适配指南

四、工业级流水线:ColumnTransformer的魔法

4.1 自动化特征工程流水线

4.2 流水线监控看板

五、避坑指南:数据准备的七大重罪

六、模型就绪检查清单

立即行动:


导言:当数据成为算法的"预制菜"

深夜的硅谷数据工厂,一条全自动预处理流水线正在轰鸣运转——缺失值填充、分类变量编码、特征缩放等工序如精密齿轮般咬合。本文将手把手教你用Scikit-Learn打造工业级数据转换流水线,让原始数据蜕变为算法可直接"食用"的标准餐品。


一、缺失值处理:数据修复的三大法则

1.1 智能填充策略选择

from sklearn.impute import SimpleImputer, KNNImputer

# 中位数填充(适用于存在离群值)
median_imputer = SimpleImputer(strategy='median')
# KNN填充(高相关特征场景)
knn_imputer = KNNImputer(n_neighbors=5)
# 迭代填充(复杂关系场景)
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer
iter_imputer = IterativeImputer(random_state=42)

# 执行中位数填充示例
housing_num = housing.select_dtypes(include=[np.number])
housing_imputed = median_imputer.fit_transform(housing_num)

1.2 填充策略对比矩阵

策略 适用场景 优点 缺点
中位数填充 存在离群值 抗干扰性强 忽略特征间关系
均值填充 正态分布数据 保持均值不变 对异常值敏感
KNN填充 特征相关性高 利用特征间模式 计算成本高
迭代填充 复杂关系数据 建模特征间关系 可能引入数据泄漏风险

二、类别变量编码:从文本到算法的语言翻译

2.1 编码方式深度对比

from sklearn.preprocessing import OrdinalEncoder, OneHotEncoder

# 序号编码(有序类别)
or
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sonal_Lynn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值