目录
一、技术架构解析:当Playwright遇见大语言模型
1.1 Browser Use核心架构
@startuml
rectangle "用户界面" as UI
rectangle "AI推理引擎" as AI {
component "LangChain" as LC
component "LLM接口" as LLM
}
rectangle "浏览器控制层" as Browser {
component "Playwright" as PW
component "DOM解析器" as DOM
}
UI -> AI : 自然语言测试用例
AI --> LC : 语义解析
LC -> LLM : 生成操作指令
LLM --> LC : JSON操作序列
LC -> Browser : 执行指令
Browser -> PW : 浏览器驱动
PW --> Browser : 操作反馈
Browser --> AI : 执行结果
@enduml
1.2 关键技术组件深度解析
Playwright的三大核心优势:
-
多浏览器支持:Chromium/Firefox/WebKit覆盖率99%的现代浏览器
-
网络拦截能力:可模拟弱网环境(3G/4G)和网络中断场景
-
设备模拟:支持iPhone/Android等移动端测试
LangChain的链式处理机制:
# 典型处理链示例
chain = (
load_prompt_template("测试用例模板")
| parse_user_input()
| generate_actions_sequence()
| validate_actions()
| execute_with_retry()
)
二、企业级测试场景实战
2.1 复杂表单提交测试(专项九氚汇案例)
测试流程图:
关键代码优化点:
# 二开优化的悬停操作方法
async def smart_hover(element, max_retry=3):
for i in range(max_