目录 一、为什么需要因果注意力? 1.1 文本生成的本质要求 1.2 信息泄露的风险 二、因果注意力的实现原理 2.1 掩码机制详解 2.2 PyTorch实现步骤 三、完整因果注意力实现 3.1 基础因果注意力类 3.2 设备感知实现技巧 四、Dropout在注意力机制中的应用 4.1 为什么需要注意力Dropout? 4.2 Dropout实现细节 4.3 Dropout率选择策略 五、批处理支持与优化 5.1 批处理实现 5.2 掩码的批处理扩展 六、因果注意力的可视化分析 6.1 注意力模式对比 6.2 因果注意力模式解读 七、实际应用与性能分析 7.1 文本生成示例 7.2 性能影响分析 八、高级话题:因果注意力的变体 8.1 滑动窗口注意力 8.2 分块因果注意力 九、工业级最佳实践 9.1 性能优化技巧 9.2 超参数调优指南 十、从因果注意力到GPT架构 10.1 GPT中的注意力层结构 10.2 完整GPT注意力块 十一、总结与展望 11.1 因果注意力的核心价值 11.2 未来发展方向 因果注意力赋予模型时间感知能力:就像人类写作时只能参考已写内容,本节将揭示因果注意力如何确保大语言模型在生成文本时不会"作弊"地看到未来信息,这是构建连贯、合理文本生成模型的关键技术。 一、为什么需要因果注意力?