在ubuntu20.04系统下安装Docker,附踩坑记录

既然你已经开始着手安装Docker了,说明已经初步了解Docker并且对Docker的优点给予了一定的赞同。如果想检验Docker是否有想象中的那么好用,就按照本文提供的详细安装步骤进入Dcoker的世界吧!

卸载老版本Docker

我在安装的时候看到很多前辈都有这一步,理由是Ubuntu系统下自带了docker的库,但是自带的docker版本太低,需要先卸载旧的再安装新的。我们直接sudo命令卸载。

$ sudo apt-get remove docker docker-engine docker.io containerd runc

安装docker步骤 

1.更新软件包和ubuntu内核

sudo apt update

sudo apt upgrade

 2.安装docker依赖

Docker在Ubuntu上依赖一些软件包。执行以下命令来安装这些依赖:

apt-get install ca-certificates curl gnupg lsb-release

3.添加docker官方GPG密钥

 curl -fsSL http://mirrors.aliyun.com/docker-ce/linux/ubuntu/gpg | sudo apt-key add -

这个执行成功会在终端显示OK

4.添加Docker软件源

在终端输入如下命令来添加docker的软件源,注意这里使用sudo命令

sudo add-apt-repository "deb [arch=amd64] http://mirrors.aliyun.com/docker-ce/linux/ubuntu $(lsb_

<think>嗯,用户现在想在UbuntuDocker安装CUDA、PyTorch、Python 3.8.10,然后导出镜像。这看起来是一个关于配置深度学习环境的Docker镜像的问题。首先,我需要回忆一下Docker的基本操作,以及如何正确安装CUDA和PyTorch。 用户可能是一个开发者或者数据科学家,需要在容器化的环境中进行机器学习或深度学习的工作。使用Docker可以方便地部署和共享环境,确保一致性。用户的需求明确,但可能对Dockerfile的编写和CUDA与PyTorch版本的兼容性不太熟悉,容易出现版本冲突的问题。 接下来,我需要考虑步骤的正确顺序。首先,选择一个合适的基础镜像,最好是从NVIDIA官方的基础镜像开始,这样已经包含了CUDA和cuDNN的支持。然后,安装Python 3.8.10,可能需要使用pyenv或者从源码编译,但更简单的方法可能是使用apt安装,或者用deadsnakes PPA。不过,Ubuntu的默认仓库可能没有3.8.10,所以需要确认正确的安装方式。 安装PyTorch的时候,需要指定与CUDA版本兼容的版本。用户可能不知道PyTorch官网提供了不同CUDA版本的安装命令,需要引导他们去官网查找正确的pip安装命令。例如,CUDA 11.3对应的PyTorch版本可能是1.12.1,但需要检查官方文档确认。 另外,安装CUDA时,可能需要通过nvidia-container-toolkit来确保Docker可以使用GPU。这部分可能需要用户安装nvidia-docker2并配置Docker的运行时。 用户可能遇到的常见问题包括:基础镜像选择不当导致CUDA无法使用,Python版本安装错误,PyTorch和CUDA版本不匹配,或者导出镜像后无法正确使用GPU。需要在这些步骤中给出明确的指令,避免用户。 在Dockerfile中,每一步都需要优化,减少层数,清理不必要的缓存文件。例如,安装Python包时使用--no-cache-dir,并合并RUN命令,减少镜像大小。此外,权限问题也可能出现,特别是在创建非root用户时,需要注意文件权限。 最后,导出镜像后,用户需要知道如何保存和加载镜像,使用docker save和docker load命令。同时,提醒用户测试镜像时挂载NVIDIA运行时,确保GPU可用。 总结下来,需要分步骤详细说明如何选择基础镜像、安装Python、配置CUDA、安装PyTorch,优化Dockerfile,处理权限,以及导出和测试镜像。同时,提供验证步骤和常见问题解决方法,帮助用户顺利完成环境搭建。</think>以下是使用DockerUbuntu系统安装CUDA、PyTorch和Python 3.8.10并导出镜像的完整指南: --- ### **1. 基础环境准备** #### 1.1 安装必要工具 ```bash # 更新系统 sudo apt update && sudo apt upgrade -y # 安装Docker sudo apt install docker.io -y sudo systemctl enable --now docker # 安装NVIDIA Container Toolkit distribution=$(. /etc/os-release;echo $ID$VERSION_ID) curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list sudo apt update && sudo apt install -y nvidia-docker2 sudo systemctl restart docker ``` --- ### **2. 编写Dockerfile** 创建文件 `Dockerfile`: ```dockerfile # 使用NVIDIA官方CUDA基础镜像(根据需求选择版本) FROM nvidia/cuda:11.3.1-cudnn8-runtime-ubuntu20.04 # 设置环境变量 ENV DEBIAN_FRONTEND=noninteractive \ PYTHON_VERSION=3.8.10 # 安装系统依赖 RUN apt update && apt install -y \ wget \ build-essential \ zlib1g-dev \ libncurses5-dev \ libgdbm-dev \ libnss3-dev \ libssl-dev \ libreadline-dev \ libffi-dev \ libbz2-dev \ curl \ git \ && rm -rf /var/lib/apt/lists/* # 安装Python 3.8.10 RUN wget https://www.python.org/ftp/python/${PYTHON_VERSION}/Python-${PYTHON_VERSION}.tgz \ && tar -xf Python-${PYTHON_VERSION}.tgz \ && cd Python-${PYTHON_VERSION} \ && ./configure --enable-optimizations \ && make -j $(nproc) \ && make altinstall \ && cd .. \ && rm -rf Python-${PYTHON_VERSION}* # 设置Python别名 RUN ln -s /usr/local/bin/python3.8 /usr/local/bin/python \ && ln -s /usr/local/bin/pip3.8 /usr/local/bin/pip # 安装PyTorch(需匹配CUDA版本) RUN pip install --no-cache-dir \ torch==1.12.1+cu113 \ torchvision==0.13.1+cu113 \ torchaudio==0.12.1 \ --extra-index-url https://download.pytorch.org/whl/cu113 # 清理缓存 RUN apt clean && \ rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/* # 设置工作目录 WORKDIR /app # 验证命令 CMD ["python", "-c", "import torch; print(torch.__version__); print(torch.cuda.is_available())"] ``` --- ### **3. 构建镜像** ```bash docker build -t pytorch-cuda-image . ``` --- ### **4. 验证镜像** ```bash # 运行容器并测试GPU支持 docker run --gpus all pytorch-cuda-image ``` 预期输出: ``` 1.12.1+cu113 True ``` --- ### **5. 导出镜像** ```bash # 保存为tar文件 docker save -o pytorch-cuda-image.tar pytorch-cuda-image # 后续加载镜像命令 # docker load -i pytorch-cuda-image.tar ``` --- ### **6. 关键参数说明** | 参数/版本 | 说明 | |--------------------|----------------------------------------------------------------------| | `nvidia/cuda:11.3.1-cudnn8-runtime-ubuntu20.04` | 基础镜像包含CUDA 11.3和cuDNN 8,适用于PyTorch 1.12+ | | `torch==1.12.1+cu113` | 必须与CUDA版本匹配,`cu113`表示CUDA 11.3支持 | | `--gpus all` | 启用GPU支持(需要NVIDIA Container Toolkit) | --- ### **7. 常见问题解决** **Q1:出现`CUDA driver version is insufficient`错误** - 解决方案:升级宿主机NVIDIA驱动 ```bash sudo apt install nvidia-driver-525 -y ``` **Q2:Python编译安装失败** - 解决方案:增加`libsqlite3-dev`依赖 ```dockerfile RUN apt install -y libsqlite3-dev ``` **Q3:镜像体积过大** - 优化方案:使用多阶段构建 ```dockerfile FROM nvidia/cuda:11.3.1-cudnn8-runtime-ubuntu20.04 AS builder # ...安装步骤... FROM nvidia/cuda:11.3.1-cudnn8-runtime-ubuntu20.04 COPY --from=builder /usr/local/ /usr/local/ ``` --- ### **8. 版本兼容性参考** | 组件 | 推荐版本 | |--------------|-------------------------| | CUDA | 11.3 / 11.7 | | PyTorch | 1.12.x / 2.0.x | | Python | 3.8.x | | cuDNN | 8.x | 建议通过PyTorch官网验证版本兼容性:https://pytorch.org/get-started/previous-versions/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值