[机器学习]降维与度量学习

本文深入探讨了机器学习中的降维技术,包括k-近邻学习、低维嵌入(如多维缩放MDS)、主成分分析PCA以及核化线性降维。同时,介绍了度量学习的概念,如近邻组件分析NCA,强调了在高维空间中寻找合适距离度量的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文档记录了《机器学习》第 10 章降维与度量学习相关内容

k-近邻学习

给定测试样本,基于某种距离度量找出训练集中与其最靠近的 k 个训练样本,然后基于这 k 个“邻居”的信息来进行预测。

  • 分类:投票法
  • 回归:平均法

两个重要量

  • k 的取值
  • 距离度量公式

错误率

设测试样本 x,对应的最近邻样本 z ,有错误率:

P(err)=1cP(c|x)P(c|z)

P(err)1cP2(c|x)

P(err)1P2(c|x)

P(err)=(1+P(c|x))(1P(c|x))

P(err)2×(1P(c|x))

懒惰学习

在训练阶段仅仅是把样本保存起来,训练时间开销为零,待收到测试样本后再进行处理。

急切学习:在训练阶段就对样本进行学习处理。

低维嵌入

为什么要进行低维嵌入

密采样假设:任意测试样本 x 附近任意小距离 δ 范围内总能找到一个训练样本,即训练样本的采样密度足够大。

当属性维度数量非常高时,若要满足密采样假设需要非常多的样本,需要缓解维度灾难。

为什么能够进行降维

在很多时候,人们观测或收集到数据样本虽然是高维的,但与学习任务密切相关的也许仅是某个低位分布,即高维空间的一个低维“嵌入”。

多维缩放(Multiple Dimensional Scaling,简称 MDS)

  • 约束条件:原始空间之间的距离在低维空间保持,即zizj=distij
  • 主要变量:
    • 原始维度:d
    • 距离矩阵 Dm×m
    • 低维空间维度:dd
    • 低维空间表示:Zd×m,为降维后中心化的样本表示
    • 降维后样本的内积矩阵:B=ZZm×m
    • 特征值构成的对角矩阵:Λ=diag(λ1,λ2,...,λd),来自特征值分解 B=VΛV,特征值 λi 按照从大到小的顺序排列
    • 非零特征向量矩阵:Vd×md 为非零特征值的个数 Z=Λ1/2Vd×m
    • d 个最大特征值构成的矩阵:V̂ d×m Z=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值