在Power BI中,数据模型是在Power BI Desktop桌面应用程序中创建的数据的结构化表示。它由表、关系和计算度量组成,使您能够有效地分析和可视化数据。
Power BI数据模型的关键组成部分
表(既可以来自数据源,也可以是计算表):数据模型包含一个或多个表,每个表包含不同的数据元素。这些表代表数据的不同方面,例如销售、客户、产品或其他相关类别。简单举例,如大家常用的Excel文件中的某一个Sheet页,导入Power BI语义模型后,就是一张表。
列(既可以来自数据源,也可以是计算列):数据模型中的每个表都包含列,这些列表示数据的特定属性或字段。例如,“销售”表可能包含“日期”、“收入”和“区域”等列。
关系:数据模型关系定义了表之间的关联。这些关系帮助建立表之间的连接,使您能够结合来自多个来源的数据,探查有意义的分析结果。关系的类型通常为表之间字段的1对1,1对多,多对1,多对多的关系。后面我会单独出一篇文章解释。
度量:度量是使用数据分析表达式(DAX)创建的自定义计算或表达式。它们允许您根据模型中现有的数据进行计算、聚合或创建新指标。
层次结构:层次结构是一种以结构化方式组织数据的方法,通常用于可视化和报告中的下钻或导航,例如,时间层次结构可能包括“年份 > 季度 > 月份”等级别;或者对详细数据信息进行汇总,例如,对区域层次结构如“省 > 市 > 县”的销售数据,从县级别汇总到省级别。
Power BI的数据建模能力使您能够将原始数据塑造和转化为结构化、有意义的格式,从而更容易构建交互式报告和仪表板。这个数据模型是创建引人注目的可视化报告和从数据中获得有价值洞察的基础。
度量一次开发,多次使用
Power BI的数据模型的语义层(语义层是定义度量的地方),在这里设置一次度量后,可以在多个上下文中多次使用,而无需重新定义。
优势:
-
提高效率:避免重复定义度量,节省时间和精力,快速构建报告和仪表板。
-
确保一致性:在不同场景中使用统一的度量定义,保证数据的一致性和准确性。
-
增强可维护性:集中管理度量定义,便于更新和维护,一处修改,多处生效。
-
降低错误风险:减少因重复定义导致的错误,提高数据质量和可靠性。
Power BI数据模型的能力
强大的数据建模功能:
-
支持创建复杂的表、关系和计算度量值。
-
提供丰富的数据转换和清洗工具。
高效的查询性能:
-
通过优化的数据存储和索引机制,快速响应查询请求。
-
支持内存计算,提高数据处理速度。
灵活的度量定义:
-
使用Data Analysis Expressions (DAX) 创建自定义度量值。
-
支持复杂的计算逻辑和动态表达式。
丰富的层次结构管理:
-
创建和管理数据层次结构,便于钻取和导航。
-
支持多级层次结构,满足复杂的业务需求。
强大的数据治理功能:
-
提供数据安全和权限管理机制。
-
支持数据合规性和审计功能。
支持多种数据源:
-
连接和整合多种数据源,包括数据库、文件、API等。
-
支持实时数据连接和数据刷新。
REST API和XMLA支持:
-
提供REST API,方便外部系统查询和管理数据模型。
-
支持XMLA格式,便于与其他BI工具和系统集成。
通过Power BI数据模型的强大能力,Power BI语义模型能够满足企业从数据建模、分析到报告生成的全方位需求,提升数据驱动决策的效率和质量。
今天的分享结束,感谢大家的持续订阅和关注。