回归分析评估指标:均方对数误差(Mean Squared Log Error)及其意义

101 篇文章 ¥59.90 ¥99.00
均方对数误差(MSLE)是回归分析的评估指标,通过取对数减少大值和小值的差异。其值越小,表示模型拟合度越高,对离群值有较好鲁棒性。常用于房价、销售和股票预测等领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

回归分析评估指标:均方对数误差(Mean Squared Log Error)及其意义

均方对数误差(Mean Squared Log Error,简称MSLE)是一种常用的回归分析评估指标,用于衡量预测值和真实值之间的误差。与均方误差(Mean Squared Error,简称MSE)相比,MSLE在计算前先对预测值和真实值取对数,这样可以减小较大值和较小值之间的差异。

MSLE的计算公式如下:

MSLE = (1/n) * Σ(log(y_pred_i + 1) - log(y_true_i + 1))²

其中,n表示样本数量,y_pred_i表示第i个样本的预测值,y_true_i表示第i个样本的真实值,log是自然对数函数。

MSLE的值越小,表示预测结果与真实值的差异越小,即模型的拟合程度越好。

下面是使用Python计算均方对数误差的示例代码:

import numpy as np
from sklearn
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值