蓄水池算法的Python实现

176 篇文章 ¥59.90 ¥99.00
本文介绍了蓄水池算法,一种适用于大规模数据流的随机抽样算法,可以在未知数据流总量的情况下,保证每个元素被选中的概率相等。提供了一个Python实现示例,展示如何从数据流中抽取指定数量的元素,只需常数级别内存空间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

蓄水池算法(Reservoir Sampling)是一种用于从大规模数据流中随机抽样的算法。它的特点在于它可以在不知道数据流的总量的情况下,从中随机选择k个元素,并且每个元素被选择的概率相等。这个算法在处理大数据流的情况下非常有用,因为它只需要常数级别的内存空间。

下面是蓄水池算法的Python实现示例代码:

import random

def reservoir_sampling(stream, k):
    reservoir = []
    n = 0

    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值