计算并在ROC曲线中添加AUC值 - R语言实现
ROC曲线是评估二分类模型性能的常用工具之一,而AUC(Area Under the Curve)则是衡量ROC曲线下面积的指标,用于度量模型的准确性。
在R语言中,我们可以使用pROC包来计算ROC曲线并添加AUC值。下面我将为你提供一个示例代码来演示如何完成这个任务。
首先,我们需要安装并加载pROC包:
install.packages("pROC") # 安装pROC包
library(pROC) # 加载pROC包
接下来,我们需要有一个二分类的预测结果以及对应的真实标签。假设我们已经有了这些数据,并分别保存在两个向量中:predictions
存储预测结果,labels
存储真实标签。请根据您的实际情况进行相应的调整。
# 假设已有预测结果和真实标签
predictions <- c(0.2, 0.5, 0.8, 0.6, 0.3)
labels <- c(0, 1, 1, 0, 1)
接下来,我们可以使用roc()
函数计算ROC曲线的数据,并利用plot()
函数绘制曲线: