Nonsubsampled Contourlet Transform Algorithm and its MATLAB Implementation

140 篇文章 ¥59.90 ¥99.00
非子采样Contourlet变换(NSCT)是一种强大的多尺度图像分析工具,避免信息损失。本文详细介绍了NSCT算法原理,并提供了MATLAB实现代码,包括预滤波、二维Undecimated Wavelet Transform、Contourlet变换和系数压缩等步骤,展示了如何使用MATLAB进行图像的分解、压缩和重构操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

非子采样Contourlet变换算法及其MATLAB实现

介绍

非子采样Contourlet变换(Nonsubsampled Contourlet Transform,NSCT)是一种用于多尺度图像分析和处理的强大工具。它能够提取图像中的边缘、纹理和结构等特征,并具有较好的局部时频特性。本篇文章将详细介绍NSCT算法的原理,并提供相应的MATLAB代码实现。

NSCT算法原理

NSCT算法基于Contourlet变换,但与传统的Contourlet变换不同,它不需要子采样操作,从而避免了信息损失。NSCT算法主要包含以下几个步骤:

  1. 首先,对输入图像进行预滤波操作,以减小高频噪声的影响。

  2. 接下来,利用二维Undecimated Wavelet Transform(UWT)对预滤波后的图像进行分解。UWT是一种无子采样的小波变换,用于提取图像的低频和高频信息。

  3. 然后,对UWT得到的低频系数进行Contourlet变换。Contourlet变换是一种多尺度、多方向的小波变换,能够更好地表示图像的边缘和纹理特征。

  4. 最后,将Contourlet变换得到的系数进行压缩,以便于图像的重构和处理。

NSCT算法的MATLAB实现

以下是使用MATLAB实现NSCT算法的示例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值