非子采样Contourlet变换算法及其MATLAB实现
介绍
非子采样Contourlet变换(Nonsubsampled Contourlet Transform,NSCT)是一种用于多尺度图像分析和处理的强大工具。它能够提取图像中的边缘、纹理和结构等特征,并具有较好的局部时频特性。本篇文章将详细介绍NSCT算法的原理,并提供相应的MATLAB代码实现。
NSCT算法原理
NSCT算法基于Contourlet变换,但与传统的Contourlet变换不同,它不需要子采样操作,从而避免了信息损失。NSCT算法主要包含以下几个步骤:
-
首先,对输入图像进行预滤波操作,以减小高频噪声的影响。
-
接下来,利用二维Undecimated Wavelet Transform(UWT)对预滤波后的图像进行分解。UWT是一种无子采样的小波变换,用于提取图像的低频和高频信息。
-
然后,对UWT得到的低频系数进行Contourlet变换。Contourlet变换是一种多尺度、多方向的小波变换,能够更好地表示图像的边缘和纹理特征。
-
最后,将Contourlet变换得到的系数进行压缩,以便于图像的重构和处理。
NSCT算法的MATLAB实现
以下是使用MATLAB实现NSCT算法的示例