物理信息神经网络PINNs : Physics Informed Neural Networks 详解

本文深入解析Physics Informed Neural Networks(PINNs),介绍其如何结合物理规律解决有监督学习任务。PINN利用偏微分方程的约束,减少对大量数据的依赖,但存在处理高维数据的挑战。文章通过连续和离散时间模型的实例,验证了PINN在解偏微分方程和反问题上的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本博客主要分为两部分:
1、PINN模型论文解读
2、PINN模型相关总结

第一部分:PINN模型论文解读

一、摘要

基于物理信息的神经网络(Physics-informed Neural Network, 简称PINN),是一类用于解决有监督学习任务的神经网络,同时尊重由一般非线性偏微分方程描述的任何给定的物理规律。
原理:它不仅能够像传统神经网络一样学习到训练数据样本的分布规律,而且能够学习到数学方程描述的物理定律。
优势:与纯数据驱动的神经网络学习相比,PINN在训练过程中施加了物理信息约束,因而能用更少的数据样本学习到更具泛化能力的模型。
缺陷:PINN的缺点是较难处理高维数据,低维可以处理,因为所需训练数据随着方程维度的增加而呈现指数增加,故这一点很大地限制了PINN求解高维方程;PINN模型的求解速度其实是很慢的,作为“没有免费午餐”定理的一个方面,作为一种“通用方法”,与为特定偏微分方程设计的传统数值格式相比,PINN在近似偏微分方程数值解的精度和速度方面仍然处于劣势。
问题分类: 文章分为两部分, 第一部分写的是 Data-driven solutions of nonlinear partial differential equations, 就是在讲怎么解 PDEs(Partial Differential Equations), 第二部分写的是 Data-driven discovery of nonlinear partial differential equations, 就是在讲怎样解PDE的反问题 (带参数的PDE,参数需要在解的过程中求解出来)。
问题求解算法模型:根据问题的数据类型不同,设计了两种不同的问题求解算法模型,即连续时间和离散时间模型。
实验验证分析:本文对 第一部分 Data-driven solutions of nonlinear partial differential equations 选取两个方程(数据类型为连续时间和离散时间)进行PINN模型验证分析;对 第二部分 Data-driven discovery of nonlinear partial differential equations 也选取两个方程(数据类型为连续时间和离散时间)进行PINN模型验证分析

全文组织结构:
在这里插入图片描述

二、解决的问题

1、监督学习是机器学习中的一个大类, 很多分类问题,回归问题都可以用它来解决。 那么, 从求解PDE的角度来看, 监督学习能发挥什么样的作用呢? (如何逼近一个函数(算子)一直以来便是数学中的难题。 数学家们发展了很多工具来逼近函数, 如插值理论,框架, 谱方法 , 有限元等。 从逼近论的角度来看, 神经网络(Neural Networks)便可以看做一个非线性函数逼近器。 我们期望输出一个

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值