本文介绍微软的 github 项目:generative-ai-for-beginners,项目地址:https://github.com/microsoft/generative-ai-for-beginners,为不可多得的学习生成式 AI 的宝贵学习资料,目前已有 75K stars。
“21个课程,教你所有需要知道的内容,以便开始构建生成式 AI 应用”。
课程内容包括生成式 AI 的方方面面,如提示工程、AI agents、模型微调、文本生成、图片生成、聊天应用、工具调用、RAG 等。
🌱课程介绍
这门课程共有 21 课,每节课都有相应的主题,学习者可以从任何一课开始学习!
课程标记为“Learn”课(解释生成式人工智能的概念),或标记为“Build”课(实践课,解释概念并提供 Python 和 TypeScript 的代码示例)。
每节课还包括一个“继续学习”部分,提供额外的学习工具。
每节课包括的内容:
-
一个简短的视频介绍主题
-
关于课程的书面介绍。
-
Python 和 TypeScript 代码示例(支持 Azure OpenAI 和 OpenAI API)。
-
额外学习资源链接,用于进一步的学习。
这本Google《生成式人工智能初学者指南》中英文版已整理并打包好PDF了
扫描即可拿到↓↓↓
🗃️课程目录
-
课程开始:设置开发环境。
-
生成式 AI 和 LLMs 入门:了解生成式 AI 是什么以及大型语言模型(LLMs)如何工作。
-
探索和比较不同的 LLMs:根据使用场景选择合适的模型。
-
使用生成式 AI:构建生成式 AI 应用程序。
-
理解提示工程基础:提示工程最佳实践。
-
创建高级提示:如何应用提示工程技术来提高提示的效果。
-
构建文本生成应用:使用 Azure OpenAI / OpenAI API 构建文本生成应用。
-
构建聊天应用:高效构建和集成聊天应用的技巧。
-
构建搜索应用和向量数据库:使用嵌入式技术搜索数据。
-
构建图像生成应用:构建图像生成应用程序。
-
构建低代码 AI 应用:使用低代码工具构建生成式 AI 应用程序。
-
通过 Function Calling 集成外部应用:Function Calling 介绍及其使用场景
-
AI 应用的用户体验设计:开发生成式 AI 应用程序时的用户体验设计原则。
-
保障生成式 AI 应用的安全:AI 系统面临的威胁和风险以及保障系统安全的方法。
-
生成式 AI 应用生命周期:管理 LLM 生命周期和 LLMOps 的工具和指标。
-
检索增强生成(RAG)和向量数据库:使用 RAG 框架从向量数据库中检索嵌入(embeddings)。
-
开源模型和 Hugging Face:使用 Hugging Face 上的开源模型构建应用程序。
-
AI 代理:使用 AI 代理框架构建应用程序。
-
微调 LLMs:微调 LLMs 的概念、原因和方法。
-
使用 SLMs 构建:使用小型语言模型(SLMs)构建应用程序的优势。
-
使用 Mistral 模型构建:Mistral 系列模型的特点和差异。
-
使用 Meta 模型构建:Meta 系列模型的特点和差异。
这本Google《生成式人工智能初学者指南》中英文版已整理并打包好PDF了
扫描即可拿到↓↓↓