Google生成式 AI 学习资源:微软手把手教你构建生成式 AI 应用(附教程)

本文介绍微软的 github 项目:generative-ai-for-beginners,项目地址:https://github.com/microsoft/generative-ai-for-beginners,为不可多得的学习生成式 AI 的宝贵学习资料,目前已有 75K stars。

21个课程,教你所有需要知道的内容,以便开始构建生成式 AI 应用”。

课程内容包括生成式 AI 的方方面面,如提示工程、AI agents、模型微调、文本生成、图片生成、聊天应用、工具调用、RAG 等。

图片

🌱课程介绍

这门课程共有 21 课,每节课都有相应的主题,学习者可以从任何一课开始学习!

课程标记为“Learn”课(解释生成式人工智能的概念),或标记为“Build”课(实践课,解释概念并提供 Python 和 TypeScript 的代码示例)。

每节课还包括一个“继续学习”部分,提供额外的学习工具。

每节课包括的内容:

  • 一个简短的视频介绍主题

  • 关于课程的书面介绍。

  • Python 和 TypeScript 代码示例(支持 Azure OpenAI 和 OpenAI API)。

  • 额外学习资源链接,用于进一步的学习。

这本Google《生成式人工智能初学者指南》中英文版已整理并打包好PDF了

扫描即可拿到↓

🗃️课程目录

  1. 课程开始:设置开发环境。

  2. 生成式 AI 和 LLMs 入门:了解生成式 AI 是什么以及大型语言模型(LLMs)如何工作。

  3. 探索和比较不同的 LLMs:根据使用场景选择合适的模型。

  4. 使用生成式 AI:构建生成式 AI 应用程序。

  5. 理解提示工程基础:提示工程最佳实践。

  6. 创建高级提示:如何应用提示工程技术来提高提示的效果。

  7. 构建文本生成应用:使用 Azure OpenAI / OpenAI API 构建文本生成应用。

  8. 构建聊天应用:高效构建和集成聊天应用的技巧。

  9. 构建搜索应用和向量数据库:使用嵌入式技术搜索数据。

  10. 构建图像生成应用:构建图像生成应用程序。

  11. 构建低代码 AI 应用:使用低代码工具构建生成式 AI 应用程序。

  12. 通过 Function Calling 集成外部应用:Function Calling 介绍及其使用场景

  13. AI 应用的用户体验设计:开发生成式 AI 应用程序时的用户体验设计原则。

  14. 保障生成式 AI 应用的安全:AI 系统面临的威胁和风险以及保障系统安全的方法。

  15. 生成式 AI 应用生命周期:管理 LLM 生命周期和 LLMOps 的工具和指标。

  16. 检索增强生成(RAG)和向量数据库:使用 RAG 框架从向量数据库中检索嵌入(embeddings)。

  17. 开源模型和 Hugging Face:使用 Hugging Face 上的开源模型构建应用程序。

  18. AI 代理:使用 AI 代理框架构建应用程序。

  19. 微调 LLMs:微调 LLMs 的概念、原因和方法。

  20. 使用 SLMs 构建:使用小型语言模型(SLMs)构建应用程序的优势。

  21. 使用 Mistral 模型构建:Mistral 系列模型的特点和差异。

  22. 使用 Meta 模型构建:Meta 系列模型的特点和差异。

图片

图片

图片

这本Google《生成式人工智能初学者指南》中英文版已整理并打包好PDF了

扫描即可拿到↓

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值