AI知识库系统是一款基于大语言模型和RAG技术的知识库管理系统,适用于智能客服、企业内部知识库、学术研究与教育等场景。它支持文档直传、自动文本拆分与向量化,结合RAG减少模型“幻觉”,提供精准智能问答。通过将用户问题与组织内部数据进行匹配,生成更准确的回答,便于管理特定领域知识,加速AI应用集成。
系统支持多类别语料的高效收集、分类、存储与检索,采用知识图谱优化数据组织和检索精度,通过模块化、层次化图结构设计解决数据管理挑战,确保智能、灵活的知识管理和问答体验。
主要功能
问答对话、智能体管理、知识库、资源预览、资源编目、图像识别、OCR识别、智能分段、网页爬虫、知识图谱、本体构建、社区摘要、模型服务管理等。
应用场景
-
智能客服:利用AI知识库系统提供的问答对话功能,企业可以构建高效的客户服务系统,自动回答客户咨询,减少人工客服的工作负担,提高客户满意度和服务效率。
-
企业内部知识管理:对于拥有大量内部文档的企业,该系统能够帮助整理、分类和管理各类知识资料,支持文档直传、自动文本拆分与向量化,便于员工快速查找所需信息,提高工作效率。
-
学术研究与教育:在学术研究和教育领域,AI知识库系统可以作为强大的辅助工具,支持研究人员和教师高效地收集、分类和检索文献资料,促进知识分享和教学活动。
-
个人知识管理:为个人用户提供专属的知识库服务,帮助整理个人学习笔记、工作资料等,通过个性化的问答服务,让用户能够快速获取所需信息,提升个人学习和工作的效率。
-
专业领域知识服务:借助GraphRAG技术,AI知识库系统特别适合于需要深度理解和处理专业领域知识的场景,如应急管理、安全生产、教育教学、医疗等行业,能够捕捉实体和概念间的关系,提供对领域知识更细致的表现与理解,辅助专业人士做出更准确的决策。
系统特点
全文档支持
支持包含结构化数据和非结构化数据电子文档的管理和内容的问答查询
GraphRAG
通过引入知识图谱来捕捉 Entity 和概念之间的关系,提供对领域知识更细致的表现与理解
个人知识库
提供面向个人知识库的专属问答服务
系统截图
图 智能对话
图 知识库管理
图 资源列表
图 智能分段
图 图像识别
图 知识图谱
图 本体构建
图 知识编辑
技术栈
-
前端:Vue3
-
后端:SpringBoot + LangChain4j
-
关系数据库:MySQL
-
图 数 据 库:Neo4j
-
向量数据库:Milvus
-
模 型 服 务:Qwen2.5
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓