Java + AI 深度学习环境搭建全攻略:从零配置 GPU 开发环境
1. 引言
在开始搭建 Java + AI 深度学习环境之前,确保你已经具备了基本的深度学习概念,并且熟悉 Java 编程。如果你还没有这些基础知识,建议先学习相关的基础知识。
2. 安装 Anaconda
Anaconda 是一个非常流行的 Python 发行版,它包含了众多的数据科学和机器学习相关的库。虽然 Anaconda 主要用于 Python,但它也可以帮助我们搭建 Java 的深度学习环境。Anaconda 提供了一个简单的方式来管理包和环境,这对于深度学习的开发非常重要。
下载和安装 Anaconda
你可以从 Anaconda 的官方网站下载适合你操作系统的版本。安装过程中,确保勾选“Add Anaconda to my PATH environment variable”选项,这样你就可以在命令行中直接使用 Anaconda 的命令。
创建新的 Conda 环境
在 Anaconda Navigator 中,点击“Environments”标签,然后点击右下角的“Create”按钮。输入环境的名称(例如 `deeplearning`),并选择 Python 的版本(推荐使用 Python 3.x)。点击“Create”按钮完成环境的创建。
3. 安装 Java 和 DL4J
Deep Learning for Java (DL4J) 是一个针对 Java 虚拟机的开源、分布式深度学习库。它可以帮助 Java 开发者方便地构建、训练和部署深度学习模型。
安装 Java JDK
从 Oracle 官方网站下载并安装最新的 Java Development Kit (JDK)。安装过程中,按照提示完成安装。
安装 DL4J
在 Anaconda 创建的环境中,打开命令行并执行以下命令来安装 DL4J:
```bash
pip install dl4j
```
4. 配置 GPU 运算
如果你打算使用 GPU 进行深度学习计算,那么你需要安装 CUDA 和 cuDNN。CUDA 是 NVIDIA 提供的并行计算平台和编程模型,cuDNN 是 NVIDIA 提供的深度学习 GPU 加速库。
安装 CUDA
从 NVIDIA 官方网站下载适合你显卡型号的 CUDA Toolkit。安装过程中,按照提示完成安装。安装完成后,你需要配置环境变量。打开你的 shell 配置文件(例如 `.bashrc` 或 `.zshrc`),添加以下内容:
```bash
export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
```
保存并关闭文件,然后运行 `source ~/.bashrc` 或 `source ~/.zshrc` 使更改生效。
安装 cuDNN
从 NVIDIA 官方网站下载 cuDNN。解压下载的文件,并将解压后的文件夹命名为 `cuda`,然后将其移动到 `/usr/local/` 目录下。例如:
```bash
sudo mv cuda /usr/local/
```
5. 验证安装
在完成上述所有步骤后,你可以通过编写一个简单的 Java 程序来验证你的深度学习环境是否配置成功。你可以参考 DL4J 的官方文档来获取更多的示例代码。
6. 总结
通过以上步骤,你应该已经成功搭建了一个 Java + AI 深度学习环境,并且配置了 GPU 运算。现在,你可以开始使用这个环境来进行深度学习的开发和研究了。如果你在配置过程中遇到任何问题,可以查阅相关的文档或者在社区中寻求帮助。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓