搭建知识库问答助手
-
在模型和知识库都准备完成后,就可以搭建一个智能助手了;
-
在
Dify
里,可以使用工作流
的形式来搭建智能助手; -
打开
工作室
->创建空白应用
,选择Chatflow
来创建一个应用 -
最简单的知识库助手是使用
聊天助手
来创建应用,但它太单一,无法进行复杂一点的操作,所以这里选择Chatflow
来创建助手; -
创建完成后会来到编排界面
-
整个流程由多个
节点
组成,Dify
支持多种类型的节点,他们功能不同,本例中使用以下几种类型LLM
:配置大语言模型知识检索
:配置知识库直接回复
:显示输出结果
-
为了更精准的匹配到知识库里的内容,首先添加一个
LLM
节点,命名为拆词
,目的是借用大模型的语言处理功能来对用户的问题进行拆解,这里模型选择qwen2.5:14b
,因为经过多轮测试后qwen2.5:14b
速度和表现达到预期,配置如下:-
SYSTEM
提示词参考- 你的任务是生成用于检索增强生成(RAG)的关键词; - 首先你需要直接记住用户的问题作为一个关键词; - 其次,用户为公司员工,他的问题和公司制度有关,你需要根据用户的问题推测他的真实需求,进行深度思考后给出RAG关键词,关键词总数量控制在10个以内; - 最后你只需将两组关键词合并后返回,每个关键词以“,”分隔,不需要其他说明和解释; - 你需要使用用户的语言来回复;
-
-
然后添加一个
知识检索
节点,将他和拆词
节点进行连接,查询变量设置为拆词
节点的输出,知识库添加已配置好的知识库 -
其次再添加一个
LLM
节点,将知识检索
节点作为入口和它进行连接,模型选择qwq
,上下文设置为知识检索
节点的输出结果,点击添加消息
,将USER
类型改为ASSISTANT
用来指定模型的提示词
,配置如下:-
SYSTEM
提示词参考仅基于上下文和以下内容作为授权知识库来回答用户问题,严格隔离外部知识源 {{#context#}}
-
ASSISTANT
提示词参考- 如果用户提的问题超出授权知识库范围,你可以委婉回答:已超出知识范围,让用户提供更多的信息; - 有明确定义的名词,不能用相近的词代替; - 公式等内容在输出时不能有格式错误; - 回复信息时能够表明意思且没遗漏信息的情况下尽可能简短; - 如果授权知识库中有公式和数字等,不要对它进行四舍五入操作,保持原来的内容; - 如果用户提的问题和上次提的问题没有很强的关联性,不需要考虑之前的问题;
-
-
最后将这个节点和
直接回复
节点进行连接,回复内容修改为上一节点的输出结果,最终节点连接图如下: -
这样一个智能助手就配置完成了,可以点击
预览
进行测试,输入一个问题后按回车,如果配置正确,整个工作流将逐步进行,效果如下: -
测试完成没有问题后就可以发布了,
Dify
可以支持将应用嵌入到其他HTML
页面。
结语
通过三篇内容将最近学的内容梳理了一遍,从基本概念理解,到动手搭建,再到参数调整,最终达到一个基本可用的状态,所有数据都在内网流转;效果没有想像中的那么完美,但是用于知识库是可行的。
特此记录,以便后续参考。
我们该怎样系统的去转行学习大模型 ?
很多想入行大模型的人苦于现在网上的大模型老课程老教材,学也不是不学也不是,基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近100余次后,终于把整个AI大模型的学习门槛,降到了最低!
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来: 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、大模型经典书籍(免费分享)
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套大模型报告(免费分享)
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、大模型系列视频教程(免费分享)
四、2025最新大模型学习路线(免费分享)
我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。
L1阶段:启航篇丨极速破界AI新时代
L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理、关键技术以及大模型应用场景。
L2阶段:攻坚篇丨RAG开发实战工坊
L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。
L3阶段:跃迁篇丨Agent智能体架构设计
L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体。
L4阶段:精进篇丨模型微调与私有化部署
L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调。
L5阶段:专题集丨特训篇 【录播课】
全套的AI大模型学习资源已经整理打包
,有需要的小伙伴可以微信扫描下方二维码
,免费领取