上一篇讲了如何本地化部署xtuner框架,本篇以魔搭社区上的开放数据集-沐雪(中文)训练集为例进行模型微调(这个模型挺有意思的,回答是萌萌的风格),最终实现模型对话的结果与数据集中的类似。同时,由于之前每次临时租服务器下载DeepSeek1.5B模型时间比较长,本篇使用比较小的模型--qwen0.5B模型为Base模型。最终的测试结果如下:
1.数据集下载
打开魔搭社区,选择沐雪(中文)训练集,进入其下载页面。
选择数据集文件中的训练数据集,并点击下载。
数据集下载完成后,点开为下图所示,其对话风格形式还是比较特殊的,不会与base模型的回答方式相重合:
2.自定义数据集格式转换
查看xtuner文档,里面的数据集有各种map_fn包,我们可以进行临时转换,但同样的,我们也可以先提前把数据集转换好,比如我们下载好的沐雪(中文)训练集的train.jsonl文件,它里面的对话格式和xtuner里面的不一致,因此我们先将其进行格式转换,将其转换为xtuner能识别的。
2.1利用在线大模型
我这里经常使用腾讯的元宝大模型,我在里面将我的需求告诉他,让他帮我写一段转换代码,将原始的train.jsonl数据集转换为xtuner可识别的,格式如下图所示的json文件:
2.2获取格式文件转换代码
在在线的元宝大模型中输入我的需求,详细描述现有jsonl里数据集的格式、我想要转换成的数据集格式的具体要求,让它帮我写一段python代码实现:
大模型输出一段代码后,我将其复制后运行,成功的将数据集进行了格式转换,因此在后面的数据处理过程中,可以充分利用在线模型帮我们处理数据,更加快捷、方便同时降低本地模型使用门槛:
2.3执行python文件,转换数据集格式文件
利用在线大模型的python代码,运行成功后的json文件如下,很好的满足了我的要求:
3.xtuner微调数据集
xtuner微调的命令也比较简单,xtuner train后面跟模型的配置文件即可。这里有一点需要注意,xtuner原始的模型配置文件在xtuner-xtuner目录里面,但是自己微调的时候,建议将配置文件复制出来,放在xtuner的根目录下执行。
3.1开始微调
更改配置文件中的相应设置:模型位置、数据集位置、batch_size、epoch后,执行即可。我这里为了充分利用我租的服务器,一开始设置批处理量为30,发现有报错,提示错误:ModuleNotFoundError: No module named 'triton.ops',网上查了下,说是要安装triton==2.3.0版本:
安装完成后,xtuner开始运行,跑着跑着出现了OOM错误,说明批处理量设置的过大,经过多次尝试(30-25-20)后,最终4090D的这台服务器上我最终设置批处理量为20,算力和GPU都充分使用了。
批处理量为25时:
批处理量为20时:
3.2微调过程中
开始微调后,xtuner会每10个步输出一条日志,这里面可以看到初始的loss值为4.15,开始逐渐降低,说明目前没啥问题,慢慢等即可。
前面几次尝试批处理量以及其他错误时,xtuner里会自动保存一些日志文件,位置在xtuner下的work_dirs,点开json文件,可以查询到具体的模型微调的过程日志,很详细:
3.3主观测试
与llamafactory不一样的是,xtuner可以选择主观测试。默认的是500个steps它会保存一次权重文件,同时它也会对你之前在配置文件中设置的问题进行测试,你可以在终端看到此时模型的回复内容,以此来判断模型微调训练是否已经达到接近拟合的状态。
这里就有点奇怪,之前测试的时候,模型已经可以回答“锐评一下二次元”。它的回答原本是“二次元啊,抛开二次元文化本身来说吧,受众群体大,又复杂,小鬼因此多了起来,故这个圈子正在所谓的“蒸蒸日上”呢”,但是不知道为啥,训练着就变成“二次元啊,啥二次元啊?你又想让我锐评什么”。
我猜测有2方面原因:1.模型训练次数不够;2.我这次用的0.5B模型,可能是因为这个模型过小导致它的能力也比较弱。因此,我这里让它继续训练,看看结果咋样。
训练了约3500步后,我发现这个微调的loss值已经长期不变,接近于0.001左右,同时关于上面那个有问题的回答还是那个错误回答,因此我选择中断微调训练,选择3500的微调结果进行实验。
3.4模型转换
xtuner训练后会自动保存PTH文件,和我们正常能调用的开源大模型(huggingface模型)不一样,因此需要进行转换,具体命令为:
xtuner convert pth_to_hf ${CONFIG_NAME_OR_PATH} ${PTH} ${SAVE_PATH}
{CONFIG_NAME_OR_PATH}是指本次调试配置文件的绝对路径;
{PTH}是指微调后权重文件的绝对路径;
{SAVE_PATH}是指你想要保存的位置;
启用命令后即可成功转换。
3.5模型对话测试
xtuner虽然没有可视化页面进行操作测试,但它提供了终端对话方法,通过命令进行调用:
{NAME_OR_PATH_TO_LLM}是指base模型的绝对路径;
{NAME_OR_PATH_TO_ADAPTER}是指转换后的权重文件的绝对路径;
{PROMPT_TEMPLATE}这个需要在xtuner-xtuner-untils里确认下,你的base模型对应的对话模版,我这里是“qwen_chat”,照着输入调用即可。
模型的对话功能起来后,你可以在终端和它进行对话,我发现之前微调过程中测试失败的问题,其实模型是能正确回答的,不知道为啥测试的时候一直失败。这里可以看到,模型的回答是按照沐雪的数据集进行回答,萌萌的还挺好玩。
3.6模型合并
对话测试后,如果对微调结果比较满意,可以将其与base模型进行合并,合并命令就是:
模型合并后的结果如截图所示,形成一个新的base模型。
4.总结
微调工具,目前国内主要使用的2个:llamafactory和xtuner。这两者分别有自己的优势。
llamafactory:可视化操作页面,支持的模型数量、类型多;
xtuner:无可视化页面,优点是微调过程中可以进行主观测试,但支持的模型数量、类型不如llamafactory。
想入门 AI 大模型却找不到清晰方向?备考大厂 AI 岗还在四处搜集零散资料?
别再浪费时间啦!2025 年 AI 大模型全套学习资料
已整理完毕,从学习路线到面试真题,从工具教程到行业报告,一站式覆盖你的所有需求,现在全部免费分享
!
👇👇扫码免费领取全部内容👇👇
一、学习必备:100+本大模型电子书+26 份行业报告 + 600+ 套技术PPT,帮你看透 AI 趋势
想了解大模型的行业动态、商业落地案例?大模型电子书?这份资料帮你站在 “行业高度” 学 AI
:
1. 100+本大模型方向电子书
2. 26 份行业研究报告:覆盖多领域实践与趋势
报告包含阿里、DeepSeek 等权威机构发布的核心内容,涵盖:
- 职业趋势:《AI + 职业趋势报告》《中国 AI 人才粮仓模型解析》;
- 商业落地:《生成式 AI 商业落地白皮书》《AI Agent 应用落地技术白皮书》;
- 领域细分:《AGI 在金融领域的应用报告》《AI GC 实践案例集》;
- 行业监测:《2024 年中国大模型季度监测报告》《2025 年中国技术市场发展趋势》。
3. 600+套技术大会 PPT:听行业大咖讲实战
PPT 整理自 2024-2025 年热门技术大会,包含百度、腾讯、字节等企业的一线实践:
- 安全方向:《端侧大模型的安全建设》《大模型驱动安全升级(腾讯代码安全实践)》;
- 产品与创新:《大模型产品如何创新与创收》《AI 时代的新范式:构建 AI 产品》;
- 多模态与 Agent:《Step-Video 开源模型(视频生成进展)》《Agentic RAG 的现在与未来》;
- 工程落地:《从原型到生产:AgentOps 加速字节 AI 应用落地》《智能代码助手 CodeFuse 的架构设计》。
二、求职必看:大厂 AI 岗面试 “弹药库”,300 + 真题 + 107 道面经直接抱走
想冲字节、腾讯、阿里、蔚来等大厂 AI 岗?这份面试资料帮你提前 “押题”,拒绝临场慌!
1. 107 道大厂面经:覆盖 Prompt、RAG、大模型应用工程师等热门岗位
面经整理自 2021-2025 年真实面试场景,包含 TPlink、字节、腾讯、蔚来、虾皮、中兴、科大讯飞、京东等企业的高频考题,每道题都附带思路解析
:
2. 102 道 AI 大模型真题:直击大模型核心考点
针对大模型专属考题,从概念到实践全面覆盖,帮你理清底层逻辑:
3. 97 道 LLMs 真题:聚焦大型语言模型高频问题
专门拆解 LLMs 的核心痛点与解决方案,比如让很多人头疼的 “复读机问题”:

三、路线必明:AI 大模型学习路线图,1 张图理清核心内容
刚接触 AI 大模型,不知道该从哪学起?这份「AI大模型 学习路线图
」直接帮你划重点,不用再盲目摸索!
路线图涵盖 5 大核心板块,从基础到进阶层层递进:一步步带你从入门到进阶,从理论到实战。
L1阶段:了解大模型的基础知识,以及大模型在各个行业的应用和分析,学习理解大模型的核心原理、关键技术以及大模型应用场景。
L2阶段:AI大模型RAG应用开发工程,主要学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。
L3阶段:大模型Agent应用架构进阶实现,主要学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造Agent智能体。
L4阶段:大模型的微调和私有化部署,更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调,并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

四、资料领取:全套内容免费抱走,学 AI 不用再找第二份
不管你是 0 基础想入门 AI 大模型,还是有基础想冲刺大厂、了解行业趋势,这份资料都能满足你!
现在只需按照提示操作,就能免费领取:
👇👇扫码免费领取全部内容👇👇
2025 年想抓住 AI 大模型的风口?别犹豫,这份免费资料就是你的 “起跑线”!