AI LLM 利器 Ollama 架构和对话处理流程解析,大模型入门到精通,收藏这篇就足够了!

Ollama 概述

Ollama 是一个旨在快速运行大语言模型(LLM)的简便工具。通过 Ollama,用户无需复杂的环境配置,即可轻松与大语言模型进行交互。

本文将分析 Ollama 的整体架构,并详细解释用户在与 Ollama 进行对话时的处理流程。


Ollama 的整体架构

Ollama 采用经典的客户端-服务器(Client-Server, CS)架构,其中:

客户端:通过命令行与用户交互。•服务器:可以通过以下方式之一启动:命令行、基于 Electron 框架的桌面应用程序或 Docker。无论采用哪种方式,最终都调用同一个可执行文件。•通信方式:客户端与服务器之间通过 HTTP 进行通信。

Ollama 服务器由两个核心组件组成:

ollama-http-server:负责与客户端交互。•llama.cpp:作为 LLM 推理引擎,加载并运行大语言模型,处理推理请求并返回结果。

ollama-http-serverllama.cpp 之间的通信也通过 HTTP 进行。

注:llama.cpp 是一个独立的开源项目,以其跨平台和硬件友好性而闻名。它可以在没有 GPU 的情况下运行,甚至可以在树莓派等设备上运行。


Ollama 的存储结构

Ollama 默认的本地存储文件夹为 $HOME/.ollama,其文件结构如下:

文件可分为三类:

日志文件:包括记录用户输入的 history 文件和服务器日志文件 logs/server.log。•密钥文件:包括私钥 id_ed25519 和公钥 id_ed25519.pub。•模型文件:包括 blobs 文件夹中的原始数据文件和 manifests 文件夹中的元数据文件。

例如,元数据文件 models/manifests/registry.ollama.ai/library/llama3.2/latest 的内容如下:

如上所示,manifests 文件采用 JSON 格式。其结构借鉴了云原生和容器领域中使用的 OCI(Open Container Initiative) 规范。manifests 文件中的 digest 字段对应于 blobs 文件夹中的实际模型数据。

Ollama 的对话处理流程

用户与 Ollama 之间的对话过程可分为以下几个步骤:

1. 启动命令

用户通过执行 CLI 命令:

ollama run llama3.2

其中llama3.2 是一个开源的大语言模型(当然也可以使用其他 LLM)来启动对话。

2. 准备阶段

•CLI 客户端向 ollama-http-server 发送 HTTP 请求以获取模型信息。服务器尝试读取本地的 manifests 元数据文件;如果该文件不存在,则返回 404 not found 错误。•如果未找到模型,CLI 客户端会向服务器发送请求拉取模型,服务器从远程存储库下载模型到本地。•CLI 客户端再次请求获取模型信息。

3. 交互式对话阶段

•CLI 向 ollama-http-server/api/generate 端点发送一个空消息,服务器进行一些内部通道处理(Go 语言中的 channel)。•如果模型信息中包含初始消息,则打印出来。用户可以基于当前模型和会话历史创建一个新模型,对话历史将被保存为 messages。•正式对话开始:CLI 向 /api/chat 端点发送请求。

此时,ollama-http-server

1.向 llama.cpp/health 端点发送请求以确认其健康状态;2.然后向 /completion 发送请求以获得对话响应;3.最后将响应返回给 CLI 并显示在终端上。

通过这些步骤,Ollama 实现了用户与大语言模型之间的高效交互。

结论

通过集成 llama.cpp 推理引擎,Ollama 简化了 LLM 技术的复杂性,使其变得易于访问和用户友好。它为开发人员和技术专业人员提供了一个高效且灵活的大语言模型推理和交互工具,在各种应用场景中大有裨益。

参考资料

https://github.com/ollama/ollama

https://github.com/ggerganov/llama.cpp

感兴趣的小伙伴可以点点关注,感谢支持🎉

想入门 AI 大模型却找不到清晰方向?备考大厂 AI 岗还在四处搜集零散资料?别再浪费时间啦!2025 年 AI 大模型全套学习资料已整理完毕,从学习路线到面试真题,从工具教程到行业报告,一站式覆盖你的所有需求,现在全部免费分享

👇👇扫码免费领取全部内容👇👇

一、学习必备:100+本大模型电子书+26 份行业报告 + 600+ 套技术PPT,帮你看透 AI 趋势

想了解大模型的行业动态、商业落地案例?大模型电子书?这份资料帮你站在 “行业高度” 学 AI

1. 100+本大模型方向电子书

在这里插入图片描述

2. 26 份行业研究报告:覆盖多领域实践与趋势

报告包含阿里、DeepSeek 等权威机构发布的核心内容,涵盖:

  • 职业趋势:《AI + 职业趋势报告》《中国 AI 人才粮仓模型解析》;
  • 商业落地:《生成式 AI 商业落地白皮书》《AI Agent 应用落地技术白皮书》;
  • 领域细分:《AGI 在金融领域的应用报告》《AI GC 实践案例集》;
  • 行业监测:《2024 年中国大模型季度监测报告》《2025 年中国技术市场发展趋势》。

3. 600+套技术大会 PPT:听行业大咖讲实战

PPT 整理自 2024-2025 年热门技术大会,包含百度、腾讯、字节等企业的一线实践:

在这里插入图片描述

  • 安全方向:《端侧大模型的安全建设》《大模型驱动安全升级(腾讯代码安全实践)》;
  • 产品与创新:《大模型产品如何创新与创收》《AI 时代的新范式:构建 AI 产品》;
  • 多模态与 Agent:《Step-Video 开源模型(视频生成进展)》《Agentic RAG 的现在与未来》;
  • 工程落地:《从原型到生产:AgentOps 加速字节 AI 应用落地》《智能代码助手 CodeFuse 的架构设计》。

二、求职必看:大厂 AI 岗面试 “弹药库”,300 + 真题 + 107 道面经直接抱走

想冲字节、腾讯、阿里、蔚来等大厂 AI 岗?这份面试资料帮你提前 “押题”,拒绝临场慌!

1. 107 道大厂面经:覆盖 Prompt、RAG、大模型应用工程师等热门岗位

面经整理自 2021-2025 年真实面试场景,包含 TPlink、字节、腾讯、蔚来、虾皮、中兴、科大讯飞、京东等企业的高频考题,每道题都附带思路解析

2. 102 道 AI 大模型真题:直击大模型核心考点

针对大模型专属考题,从概念到实践全面覆盖,帮你理清底层逻辑:

3. 97 道 LLMs 真题:聚焦大型语言模型高频问题

专门拆解 LLMs 的核心痛点与解决方案,比如让很多人头疼的 “复读机问题”:


三、路线必明: AI 大模型学习路线图,1 张图理清核心内容

刚接触 AI 大模型,不知道该从哪学起?这份「AI大模型 学习路线图」直接帮你划重点,不用再盲目摸索!

在这里插入图片描述

路线图涵盖 5 大核心板块,从基础到进阶层层递进:一步步带你从入门到进阶,从理论到实战。

img

L1阶段:启航篇丨极速破界AI新时代

L1阶段:了解大模型的基础知识,以及大模型在各个行业的应用和分析,学习理解大模型的核心原理、关键技术以及大模型应用场景。

img

L2阶段:攻坚篇丨RAG开发实战工坊

L2阶段:AI大模型RAG应用开发工程,主要学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

img

L3阶段:跃迁篇丨Agent智能体架构设计

L3阶段:大模型Agent应用架构进阶实现,主要学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造Agent智能体。

img

L4阶段:精进篇丨模型微调与私有化部署

L4阶段:大模型的微调和私有化部署,更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调,并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

img

L5阶段:专题集丨特训篇 【录播课】

img
四、资料领取:全套内容免费抱走,学 AI 不用再找第二份

不管你是 0 基础想入门 AI 大模型,还是有基础想冲刺大厂、了解行业趋势,这份资料都能满足你!
现在只需按照提示操作,就能免费领取:

👇👇扫码免费领取全部内容👇👇

2025 年想抓住 AI 大模型的风口?别犹豫,这份免费资料就是你的 “起跑线”!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值