RLHF(基于人类反馈的强化学习)技术详解与工程实现
一、RLHF核心思想
RLHF(Reinforcement Learning from Human Feedback)是一种通过人类反馈信号优化AI模型的技术范式,其核心是通过将人类偏好转化为可计算的奖励信号,替代传统强化学习中人工设计的奖励函数。RLHF已成为大语言模型(LLM)对齐(Alignment)的主流方法,ChatGPT、Claude等模型均依赖RLHF实现安全、有用的输出。
二、RLHF技术架构
RLHF的实现分为三个阶段,每个阶段解决不同的问题:
1. 监督微调(SFT)阶段
- 目标:使用高质量人类标注数据对预训练模型进行初步优化,使其适应目标领域。
- 实现方式:
- 数据格式:输入-输出对(例如问答数据、指令跟随数据)。
- 训练目标:最大似然估计(MLE),即让模型输出的概率分布接近人类标注数据。