RLHF(基于人类反馈的强化学习)技术详解与工程实现

RLHF(基于人类反馈的强化学习)技术详解与工程实现

一、RLHF核心思想

RLHF(Reinforcement Learning from Human Feedback)是一种通过人类反馈信号优化AI模型的技术范式,其核心是通过将人类偏好转化为可计算的奖励信号,替代传统强化学习中人工设计的奖励函数。RLHF已成为大语言模型(LLM)对齐(Alignment)的主流方法,ChatGPT、Claude等模型均依赖RLHF实现安全、有用的输出。
RLHF


二、RLHF技术架构

RLHF的实现分为三个阶段,每个阶段解决不同的问题:

1. 监督微调(SFT)阶段
  • 目标:使用高质量人类标注数据对预训练模型进行初步优化,使其适应目标领域。
  • 实现方式
    • 数据格式:输入-输出对(例如问答数据、指令跟随数据)。
    • 训练目标:最大似然估计(MLE),即让模型输出的概率分布接近人类标注数据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值