大模型上下文长度扩展关键技术

大模型(如Qwen3-32B)的上下文长度扩展是其核心能力之一,其实现依赖于算法优化与硬件资源的协同设计。以下从技术原理硬件依赖优化策略三个维度系统解析其关联逻辑,并以Qwen3-32B为例说明实践方案:


在这里插入图片描述

⚙️ 一、上下文长度扩展的技术原理

1. 位置编码革新:RoPE与动态插值
  • RoPE(旋转位置编码):Qwen3-32B 基于相对位置编码,通过旋转矩阵捕获token距离信息,支持训练长度(40K)内的稳定建模。
  • YaRN动态插值:为突破40K限制,采用YaRN(Yet another RoPE Scaling)技术:
    • 数学原理:调整RoPE旋转基频,将位置索引压缩至预训练范围:
      m ′ = m ⋅ L train L target m' = m \cdot \frac{L_{\text{train}}}{L_{\text{target}}} m=mLtarget
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值