2、微调VS提示工程

微调VS提示工程


微调和提示工程都是让预训练语言模型适应特定任务的两种常见方法

微调

1、原理: 使用特定任务的数据集对预训练模型进行进一步训练,调整模型参数以适应新任务。
2、优点:
(1)更高的准确率: 通常能获得比提示工程更高的准确率,因为模型参数经过了更精细的调整。
(2)更灵活: 可以处理各种各样的任务,包括文本分类、问答、文本生成等。
3、缺点:
(1)需要更多数据: 需要大量的特定任务数据进行训练。
(2)训练时间更长: 训练过程耗时更长,需要更大的计算资源。
(3)容易过拟合: 如果训练数据不足或质量不高,容易导致模型过拟合,在测试集上表现不佳。
(4)模型存储空间更大: 微调后的模型通常比原始预训练模型更大。

提示工程

1、原理: 通过设计有效的提示词,引导预训练模型输出特定结果,无需进行模型参数更新。
2、优点:
(1)无需训练: 不需要额外的训练数据和训练过程,可以节省时间和资源。
(2)更轻量级: 不需要存储新的模型参数,只需要存储提示词,占用空间更小。
(3)更灵活: 可以通过调整提示词来适应不同的任务和需求。
3、缺点:
(1)准确率较低: 通常比微调的准确率低,因为模型参数没有进行调整。
(2)对提示词的质量要求高: 需要设计合适的提示词才能获得理想的结果。
(3)可解释性较差: 提示词的设计过程缺乏可解释性,难以理解为什么某些提示词会带来更好的结果。

### 大模型微调技术详解 指令微调是一种通过特定数据集来优化大型语言模型性能的方法[^1]。此方法旨在使模型能够更好地理解并执行具体的任务指令。为了实现这一点,通常会准备一组高质量的输入-输出对作为训练样本,这些样例展示了期望中的交互模式。 对于大模型而言,在进行微调之前,先要选择合适的预训练模型架构以及初始化参数设置。接着定义目标任务的具体形式化描述,并收集或创建相应的标注语料库用于后续的学习过程。当准备好上述资源之后,则可以采用梯度下降法或其他最优化算法调整权重直至收敛至局部最优解附近为止。 #### Python代码示例:使用Hugging Face Transformers库进行指令微调 ```python from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments model_name = "bert-base-uncased" train_dataset = ... # 加载训练数据集 eval_dataset = ... # 加载验证数据集 # 初始化模型 model = AutoModelForSequenceClassification.from_pretrained(model_name) training_args = TrainingArguments( output_dir='./results', num_train_epochs=3, per_device_train_batch_size=8, per_device_eval_batch_size=8, warmup_steps=500, weight_decay=0.01, logging_dir='./logs', ) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=eval_dataset ) trainer.train() ``` ### 提示工程最佳实践 提示工程指的是设计有效的自然语言表达方式以引导模型生成预期的回答。良好的提示应当简洁明了、具有针对性且能充分传达上下文信息给到目标受众。在实际操作过程中,可以通过实验不同的措辞组合找到最适合当前应用场景下的表述方案;同时也可以利用模板机制快速构建多样化的提问框架以便于测试多种可能性。 另外值得注意的是,随着研究进展技术迭代更新,越来越多的研究表明引入外部知识源(如百科全书条目、领域专业知识等)有助于进一步提升提示的效果。因此建议开发者们积极探索如何合理运用此类辅助材料来增强系统的理解推理能力[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值