15、论文阅读:使用反向多类Adaboost与深度学习的水下目标检测

前言

近年来,基于深度学习的方法在标准目标检测方面取得了令人瞩目的效果。然而,这些方法在应对水下目标检测时能力不足,原因在于以下挑战:(1) 在实际应用中,目标通常较小且图像模糊;(2) 水下数据集及实际应用中的图像伴随异质性噪声。为了解决这两个问题,我们首先提出了一种新颖的神经网络架构,即样本加权超网络 (SWIPENet),用于小目标检测。SWIPENet由高分辨率和语义丰富的超特征图组成,可以显著提高小目标检测的准确性。此外,我们提出了一种新颖的样本加权损失函数,用于对SWIPENet中的样本权重建模,并使用一种新颖的样本重加权算法——Invert Multi-Class Adaboost(IMA),以减少噪声对SWIPENet的影响。在URPC2017和URPC2018两个水下机器人抓取比赛数据集上的实验表明,提出的SWIPENet+IMA框架在检测准确性上优于多种先进的目标检测方法。

介绍

水下目标检测旨在定位和识别水下场景中的物体。由于在海洋学、水下导航 以及水产养殖等领域的广泛应用,这一研究持续受到关注。然而,由于复杂的水下环境和光照条件,水下目标检测仍然面临挑战。

基于深度学习的目标检测系统在各种应用中已展示出良好的性能,但在水下目标检测方面仍显不足。原因首先在于水下检测数据集稀缺,且现有数据集和实际应用中的目标通常较小。目前的基于深度学习的检测器无法有效检测这些小目标(见图1示例)。其次,现有水下数据集和实际应用中的图像往往杂乱不堪。在水下场景中,波长相关的吸收和散射会显著降低图像质量,导致诸如可见度下降、对比度弱以及颜色变化等问题,为检测任务带来了诸多挑战。
在这里插入图片描述

为了解决这些问题,我们提出了一种名为样本加权超网络 (SWIPENet) 的深度神经网络,通过充分利用多种超特征图来提升小目标检测的效果。此外,我们引入了一种样本加权损失函数,并结合反向多类Adaboost (IMA) 算法,减少噪声对SWIPENet特征学习的影响。

本文的其余部分结构如下:第二节简要介绍相关工作;第三节描述SWIPENet的结构和样本加权损失;第四节介绍反向多类Adaboost算法;第五节报告了该方法在URPC2017和URPC2018两个水下数据集上的实验结果。

相关工作

水下目标检测

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值