分类和聚类的区别及各自的常见算法

本文详细阐述了分类与聚类两种机器学习方法的区别及应用场景,介绍了常用的分类算法如决策树、朴素贝叶斯等,以及典型的聚类算法K均值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、分类和聚类的区别:

        Classification (分类),对于一个classifier,通常需要你告诉它“这个东西被分为某某类”这样一些例子,理想情况下,一个 classifier 会从它得到的训练集中进行“学习”,从而具备对未知数据进行分类的能力,这种提供训练数据的过程通常叫做supervised learning (监督学习),

        Clustering (聚类),简单地说就是把相似的东西分到一组,聚类的时候,我们并不关心某一类是什么,我们需要实现的目标只是把相似的东西聚到一起。因此,一个聚类算法通常只需要知道如何计算相似度就可以开始工作了,因此 clustering 通常并不需要使用训练数据进行学习,这在Machine Learning中被称作unsupervised learning (无监督学习).

2、常见的分类与聚类算法

        所谓分类,简单来说,就是根据文本的特征或属性,划分到已有的类别中。如在自然语言处理NLP中,我们经常提到的文本分类便就是一个分类问题,一般的模式分类方法都可用于文本分类研究。常用的分类算法包括:决策树分类法,朴素贝叶斯分类算法(native Bayesian classifier)、基于支持向量机(SVM)的分类器,神经网络法,k-最近邻法(k-nearestneighbor,kNN),模糊分类法等等。

        分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应。但是很多时候上述条件得不到满足,尤其是在处理海量数据的时候,如果通过预处理使得数据满足分类算法的要求,则代价非常大,这时候可以考虑使用聚类算法。

        而K均值(K-mensclustering)聚类则是最典型的聚类算法(当然,除此之外,还有很多诸如属于划分法K中心点(K-MEDOIDS)算法、CLARANS算法;属于层次法的BIRCH算法、CURE算法、CHAMELEON算法等;基于密度的方法:DBSCAN算法、OPTICS算法、DENCLUE算法等;基于网格的方法:STING算法、CLIQUE算法、WAVE-CLUSTER算法;基于模型的方法)。

### 分类算法聚类算法区别 分类是一种监督学习方法,它要求在训练阶段明确知道各类别的信息,并且假定所有待分类项都应归属于某个特定类别。这意味着分类模型的学习过程依赖于带有标签的数据集[^1]。 相比之下,聚类属于无监督学习范畴,其特点是无需提前知晓样本的具体类别标号。它的主要目的是依据某些相似性准则将未标注的样本分组为多个类别,而不关注这些类别的实际意义或名称[^1]。 #### 应用场景对比 - **分类的应用场景** 当面对的任务是有清晰定义的类别并拥有大量带标签的历史数据时,分类算法尤为适用。例如垃圾邮件识别、疾病诊断以及客户信用评估等领域都可以利用分类技术来预测新输入所属的类别[^1]。 - **聚类的应用场景** 对于那些无法获取明确类别标签的大规模数据集合来说,采用聚类分析更为合适。典型例子包括市场细分、图像分割社会网络分析等场合,在这里我们更注重发现隐藏结构而非具体命名每一类群体。 ### 常见类型的介绍 #### 分类算法常见类型 虽然本题重点在于讨论两者的区别及其应用领域,但仍简单提及几种常见分类器形式作为补充说明: - 支持向量机(SVM): 寻找最佳超平面以区分不同类别的边界线; - 随机森林(Random Forests): 构建众多决策树并通过投票机制决定最终归属; - 深度神经网络(Deep Neural Networks): 利用多层感知机构架设复杂映射关系完成精准判断。 #### 聚类算法常见类型 针对不同类型的数据特性设计有不同的聚类策略,下面列举部分代表性的方案: | 类别 | 描述 | |------------|--------------------------------------------------------------------------------------| | K-Means | 将空间划分为K个区域,使每个点至中心的距离平方达到最小值 [^4]| | 层次聚类 | 不断合并最接近子节点直至形成单一根节点 [^2]| | DBSCAN | 根据密度连接原则寻找稠密区并排除稀疏噪声 [^4]| | GMM | 使用高斯混合模型拟合数据分布,估计各成分权重及参数 [^3]| 以上表格展示了四种典型的聚类方式各自的特点概述。 ```python from sklearn.cluster import KMeans, AgglomerativeClustering, DBSCAN import numpy as np data = np.random.rand(100, 2) # Example of using different clustering algorithms kmeans_model = KMeans(n_clusters=3).fit(data) hierarchical_model = AgglomerativeClustering(n_clusters=3).fit(data) dbscan_model = DBSCAN().fit(data) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值