022_SSS_Novel View Synthesis with Diffusion Models

本文介绍了一种利用扩散模型进行新颖视图合成的方法3DiM,可在给定单一视角图像的情况下生成任意视角的图像。主要贡献包括:提出了一种用于视图合成的扩散模型3DiM;引入了随机条件采样方法;设计了一种新的X-UNet架构;并提出了一种评估方案——3D一致性评分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Novel View Synthesis with Diffusion Models

1. Introduction

本文利用diffusion模型,在给定参考图的条件下,生成指定pose的图像,作者称为3DiM。并且可以在给定一张特定视角的图的条件下,生成其他所有视角的图。

本文的主要贡献:

  1. 提出了3DiM模型,利用diffusion实现novel view synthesis。
  2. 提出了stochastic conditioning
  3. 提出了X-UNet,一种新的UNet架构
  4. 提出了一种新的evaluation scheme,称作3D consistency scoring。

2. Methodology

2.1 Pose Conditional Diffusion Models

如图所示,只是把给定的pose和参考图像作为条件输入。一目了然,不再赘述。

在这里插入图片描述

2.2 Stochastic Conditioning Sampler

如图所示,Stochastic Conditioning Sampler就是指,在Diffusion的采样过程中,每一步从给定的条件图像中随机选出一张作为条件输入。

如果要实现在给定一张图的条件下生成其他所有视角的图,那么在step1的时候只有一张条件图,但是在之后的生成过程中,从step2开始,就可以利用已经生成好的图作为条件,作者指出选取两张条件图作为随机选择可以达到最好的效果。

在这里插入图片描述

2.3 X-UNet

如图所示,一目了然。

在这里插入图片描述

2.4 3D consistency scoring

这部分,作者提出了一种新的evaluation scheme。

在这里插入图片描述

刚接触3D,需要先补充一些基础知识。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值