Python 使用tqdm来监控循环进度(包括多线程)

在 Python 中,你可以使用 tqdm 库来监控 for 循环的进度,它能显示一个直观的进度条,帮助你了解循环的执行情况。以下是具体的使用方法:

安装 tqdm

如果你还没有安装 tqdm,可以使用以下命令进行安装:

pip install tqdm

基本用法

使用 tqdm 包装可迭代对象(如列表、范围等),它会自动显示进度条:

from tqdm import tqdm
import time

# 模拟一个耗时的循环
for i in tqdm(range(100)):
    time.sleep(0.1)  # 模拟耗时操作

运行这段代码,你会看到类似下面的进度条:

100%|████████████████████████████████████████| 100/100 [00:10<00:00,  9.97it/s]

处理 Pandas DataFrame

如果你需要处理 Pandas DataFrame 的行,可以使用 tqdm.pandas() 方法:

import pandas as pd
from tqdm import tqdm

# 初始化 tqdm 用于 pandas
tqdm.pandas()

# 创建一个示例 DataFrame
df = pd.DataFrame({'a': range(100), 'b': range(100, 200)})

# 使用 progress_apply 代替 apply
df['result'] = df.progress_apply(lambda row: row['a'] + row['b'], axis=1)

自定义进度条

你可以通过参数自定义进度条的外观和行为:

from tqdm import tqdm
import time

# 自定义进度条
for i in tqdm(range(100), desc="处理中", unit="项", colour="green"):
    time.sleep(0.1)

这将显示一个绿色的进度条,并带有自定义描述和单位:

处理中: 100%|███████████████████████████████| 100/100 [00:10<00:00,  9.97项/s]

在 Jupyter Notebook 中使用

在 Jupyter Notebook 中,推荐使用 tqdm.notebook.tqdm 以获得更好的显示效果:

from tqdm.notebook import tqdm
import time

for i in tqdm(range(100)):
    time.sleep(0.1)

嵌套循环

对于嵌套循环,tqdm 也能正常工作:

from tqdm import tqdm
import time

for i in tqdm(range(5), desc="外层循环"):
    for j in tqdm(range(100), desc="内层循环", leave=False):
        time.sleep(0.01)

使用 leave=False 参数可以避免内层循环的进度条干扰外层循环的显示。

通过以上方法,你可以方便地使用 tqdm 监控任何 for 循环的进度,让你的程序执行过程更加透明。

监控多线程进度

with ThreadPoolExecutor(max_workers=10) as executor:
            futures = [
                executor.submit(_doc_mark, file_content)
                for file_content in split_data
            ]
            for future in tqdm(
                concurrent.futures.as_completed(futures),
                total=len(futures),
                desc=".....",
                unit="chunk",
            ):
                result = future.result()
                if isinstance(result, tuple) and result[0]:
                    # logging.info(f'....{result}')
                    results.extend(result[1])
                else:
                    logging.error(f"....{result}")
                    failed.append(result[1])

监控异步进度

from tqdm.asyncio import tqdm

async def test_cases_scenario_evaluate(
        self, requirement_doc: str, test_cases: List[dict]
    ) -> any:
        async def bounded_task(
            sem: asyncio.Semaphore,
            requirement_doc_part: str,
            inner_test_cases: List[dict],
        ):
            async with sem:
                return await self.genai_service.test_cases_scenario_evaluate(
                    requirement_doc_part, inner_test_cases
                )

        split_data = requirement_doc.split(SplitMark.DOC_SPLIT_MARK)
        final_results = []
        failed_results = []
        sem = asyncio.Semaphore(10)
        tasks = [
            bounded_task(sem, part, test_cases['success'])
            for part in split_data
        ]
        
        progress_bar = tqdm(
            total=len(tasks),
            desc="Evaluating test-case scenarios",
            unit="part",
            dynamic_ncols=True
        )
        
        for coro in asyncio.as_completed(tasks):
            data = await coro
            result = data['result']['final_results']
            failed_result = data['result']['failed_cotent']
            final_results.append(result)
            failed_results.append(failed_result)
            progress_bar.update(1)  # 手动更新进度条
            
        progress_bar.close()  # 关闭进度条
        
        return {
            "success": final_results,  # 修正为返回所有结果
            "failed": failed_results,  # 修正为返回所有失败结果
        }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值