数据集成-缝合一套数据仓库Infra的臆想

一、数据集成当前困境

目前数据集成基础设施建设仅一个单一数据库,无法很好支持上层应用的建设步骤,继续采用当前设施跟随产品的策略,数据产品开发受限巨大,从目前实施的几个产品看,存在以下主要问题:

  • 功能支持受限,新功能由于无 Infra 支持,大部分最终以比较畸形的形式存在。
  • 开发成本难以预估,且都存在成本超预算的现象。
  • 技术人力资源局限,使用激进的自主开发需要大量有丰厚大数据技术积累的人员,目前不具备这样的条件。

对于数据集成 “全平台数据打通,高效低代码开发” 的基本目标,迫切需要一个拥有较为完善基础设施(Infra)的“数据仓库”。

二、为什么需要数据仓库?

已经有了数据库,为什么还需要数据仓库?在宏观上,数据库通常是一种OLTP数据库,局限于单一的应用软件,构成数据库系统。虽然数据库的设计使事务型数据库运行得更有效率,但是事务型数据库不善于分析。也就是说,数据库的组织结构决定它的分析能力并不好,相对地,数据仓库的组织结构,能够让它快速简单地处理分析的请求,帮助决策者优化流程、节省成本和保障质量。

数据仓库(Data Warehouse,DW)是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合。细节对比如下:

同时数据仓库也是数据中台的基石,是必不可少的一个重要因子。

三、数据仓库基础架构

事务型数据库保存数据的瞬态信息,分析型数据仓库保存大量的历史数据。在实际业务处理中,除了事务型业务和分析型业务,还存在介于事务型和分析型之间的需求,即快速地分析短期的历史数据。这种分析需求无法在保存瞬态数据的事务型数据库中完成,也不能在保存大量历史数据的数据仓库中完成,形成 DB-ODS-DW 的三层体系结构。

四、技术选型

目前市面上关于数仓的技术已经非常成熟,类型也是五花八门。但是考虑开发人员所掌握的技术等原因,我们应当快速以成熟技术完成数据仓库的 Infra 设施部署和相关开发秩序的建立。选定成熟的大数据技术堆栈包含数据存储、数据开发、BI 服务、元数据服务,且各方面都需要有十分成熟的开源产品支持。

这样基于成熟的大数据开发栈,开发人员不需要了解各组件的部署、实现,可以以近似低代码(数据集成能力)形式接入各数据业务、完成数仓数据积累。比如七巧低代码通过预构建的连接器与多

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

道一云黑板报

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值