Autodl配置环境记录

文章讲述了如何在使用tensorflow-gpu1.8.0和keras2.1.6的环境下,配合cuda9.0进行环境搭建。通过miniconda创建新环境并使用pip安装所需库,避免安装冲突。强调了tensorflow-gpu与CPU版本共存会导致GPU无法正常工作,以及利用FileZilla通过SSH上传数据集的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.因为使用的框架是tensorflow-gpu1.8.0以及对应的keras2.1.6,所以对应的cuda版本为9.0,autodl下miniconda内置了cuda9.0,选择服务器显卡的时候就用miniconda(也就是一开始)

 

 

2.因为miniconda里缺少一些包,所以需要自己安装框架和函数库包

3.进入终端,新建环境,在新建环境里,使用pip安装keras和tensorflow-gpu,这里使用conda安装的话,会造成tensorflow和tensorflow-gpu同时存在,也会造成Numpy库的版本多余

4.如果运行代码,发现缺少包的话,就相应的用pip安装就好了

5.tensorflow如果存在cpu版本,则会调用GPU失败,导致在跑数据的时候很慢,就是损失函数下降以及迭代一次很慢

6.记得存储镜像,这样租用新实例,可以直接转移框架和一些函数包,省时省力

 

7.上传数据集文件之类的,选择用了FileZilla,点击文件-站点管理器,在主机和端口框中输入相应的地址以及密码,这个来自于Autodl的实例SSH,将其复制后,提取一串字符中-p后的端口以及主机,再复制密码,链接即可上传文件

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值