df1.loc[:,'前部']=df1['班级名称'].str.slice(0,15)
df1.loc[:,'大区']=df1['班级名称'].str.split('-').str[0]
df1.loc[:,'版本']=df1['班级名称'].str.split('-').str[1]
df1.loc[:,'进度']=df1['班级名称'].str.split('-').str[2]
df1.loc[:,'时间']=df1['班级名称'].str.split('-').str[3]
df1.loc[:,'时间1']=df1['时间'].str.split('(').str[0]
df1['id尾号']=df1['姓名id'].str.split('-',n=2).str[1].str.slice(0,6)
常规字符串截取处理
(编辑技巧:mac❀+数字2,设定为目录)
1、str.cat和指定字符串
df1.loc[:,'合并']=df1['大区'].str.cat(df1['版本'],sep='-').str.cat(df1['进度'],sep='-')
str.cat可以连接多列,并设定连接符
2、split按照指定字符分割
df1.loc[:,'大区']=df1['班级名称'].str.split('-').str[0]
df1['id尾号']=df1['姓名id'].str.split('-',n=2).str[1].str.slice(0,6)
以上为按‘-’分割某列,并取分割后的第一部分字符串
split('-',expand=True,n=1),expand默认是False,若设置为True则会将列表展开,变成多列,n是设置分列的次数,n=1则分割一次,成2部分
rsplit和split用法一致,只不过是从右边开始分列
3、partition按照指定字符进行分割,且只分割一次
df1.loc[:,'1']=df