Bitmap和图片相关优化

本文介绍了Bitmap优化的三种策略:采样压缩、质量压缩和缩放法,同时涵盖内存优化、复用池和缓存技术,如LRU算法与自定义缓存框架,以提升图片加载效率并减少内存消耗。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Bitmap优化可做

1:像素优化,过大的原图缩小适当尺寸使用 2:内存复用 3:缓存

缓存一般有三级缓存:先内存中找,再磁盘中找,最后网络找。

Bitmap内存优化,如下可以调整bitmap大小和设计图一致,不失真。并且启用Bitmap复用

1)采样压缩:

public class BitmapUtil {
    public static Bitmap resizeBitmap(Context context, int id, int maxW, int maxH, boolean hasAlpha, Bitmap reusable) {
        Resources resources = context.getResources();
        BitmapFactory.Options options = new BitmapFactory.Options();
        options.inJustDecodeBounds = true;
        BitmapFactory.decodeResource(resources, id, options);
        int w = options.outWidth;
        int h = options.outHeight;
        //1:采样率
        //2:取值:2的整数幂(小于1则取值为1,任何其他值将向下舍入到最接近的2的幂)
        options.inSampleSize = calcuteImSampleSize(w, h, maxW, maxH);
        if(!hasAlpha) {
            //如果没有透明度就用RGB_565节约内存,默认是ARGB_8888
            options.inPreferredConfig = Bitmap.Config.RGB_565;
        }
        //关闭设置
        options.inJustDecodeBounds = false;
        //下面两句可以将Bitmap设置成能复用
        options.inMutable = true;
        options.inBitmap = reusable;
        return BitmapFactory.decodeResource(resources, id, options);
    }

    private static int calcuteImSampleSize(int w, int h, int maxW, int maxH) {
        int inSampleSize = 1;
        if(w>maxH && h>maxH){
            inSampleSize = 2;
            while (w/inSampleSize>maxW && h/inSampleSize>maxH) {
                inSampleSize*=2;
            }
        }
        return inSampleSize;
    }
}

2)质量压缩(不会压缩Bitmap的内存占用,保存成文件的时候大小变小了)

        public static Bitmap compressImage(Bitmap bitmap){  
            ByteArrayOutputStream baos = new ByteArrayOutputStream();  
            //质量压缩方法,这里100表示不压缩,把压缩后的数据存放到baos中  
            bitmap.compress(Bitmap.CompressFormat.JPEG, 100, baos);  
            int options = 100;  
            //循环判断如果压缩后图片是否大于50kb,大于继续压缩  
            while ( baos.toByteArray().length / 1024>50) {  
                //清空baos  
                baos.reset();  
                bitmap.compress(Bitmap.CompressFormat.JPEG, options, baos);  
                options -= 10;//每次都减少10  
            }  
            //把压缩后的数据baos存放到ByteArrayInputStream中  
            ByteArrayInputStream isBm = new ByteArrayInputStream(baos.toByteArray());  
            //把ByteArrayInputStream数据生成图片  
            Bitmap newBitmap = BitmapFactory.decodeStream(isBm, null, null);  
            return newBitmap;  
        }  

3)缩放法压缩

通过Bitmap的静态方法createScaledBitmap来压缩Bitmap,必须对老的Bitmap做recycle并且置空回收。

    public static Bitmap createScaledBitmap(@NonNull Bitmap src, int dstWidth, int dstHeight,
            boolean filter) {
        Matrix m = new Matrix();

        final int width = src.getWidth();
        final int height = src.getHeight();
        if (width != dstWidth || height != dstHeight) {
            final float sx = dstWidth / (float) width;
            final float sy = dstHeight / (float) height;
            m.setScale(sx, sy);
        }
        return Bitmap.createBitmap(src, 0, 0, width, height, m, filter);
    }

LRU算法,最近最少使用的先丢弃。整体数据通过双向列表保存。

手写缓存框架

现在下载该地址项目下的三个文件拉到项目中

GitHub - JakeWharton/DiskLruCache: Java implementation of a Disk-based LRU cache which specifically targets Android compatibility.

写个缓存类

public class ImageCache {
   private static volatile ImageCache instance;
    private LruCache<String, Bitmap> memoryCache;
    private DiskLruCache diskLruCache;
    BitmapFactory.Options options = new BitmapFactory.Options();

   public static ImageCache getInstance(){
       if(instance == null) {
           synchronized (ImageCache.class) {
               if(instance == null) {
                   instance = new ImageCache();
               }
           }
       }
       return instance;
   }

   //复用池
    public static Set<WeakReference<Bitmap>> reuseablePool;

    Context context;
    //dir就是磁盘缓存存放数据的路径
    public void init(Context context, String dir) {
       this.context = context.getApplicationContext();
       //复用池
        reuseablePool = Collections.synchronizedSet(new HashSet<WeakReference<Bitmap>>());
        ActivityManager am = (ActivityManager) context.getSystemService(Context.ACTIVITY_SERVICE);
        int memoryClass = am.getMemoryClass();
        memoryCache = new LruCache<String, Bitmap>(memoryClass/8*1024*1024){
            //return value 占用内存大小
            @Override
            protected int sizeOf(String key, Bitmap value) {
                if(Build.VERSION.SDK_INT < Build.VERSION_CODES.KITKAT){
                    return value.getByteCount();
                }
                return value.getAllocationByteCount();
            }

            @Override
            protected void entryRemoved(boolean evicted, String key, Bitmap oldValue, Bitmap newValue) {
                //oldValue就是从LRU中拿出来的Bitmap
                if(oldValue.isMutable()) {//如果能复用
                    reuseablePool.add(new WeakReference<Bitmap>(oldValue, getReferenceQueue()));
                } else {
                    oldValue.recycle();
                }
            }
        };
        try {
            diskLruCache = DiskLruCache.open(new File(dir), 1, 1, 10*1024*1024);
        } catch (Exception e) {
            e.printStackTrace();
        }

    }

    //引用队列
    ReferenceQueue referenceQueue;
    Thread clearReferenceQueue;
    boolean shutDown;
    //用于主动监听GC的API,加快回收
    private ReferenceQueue<Bitmap> getReferenceQueue() {
        if(referenceQueue == null) {
            referenceQueue = new ReferenceQueue<Bitmap>();
            clearReferenceQueue = new Thread(new Runnable() {
                @Override
                public void run() {
                    while (!shutDown) {
                        try {
                            //remove带阻塞功能,引用队列里面如果没有,就不会执行下去,会等待
                            Reference<Bitmap> reference = referenceQueue.remove();
                            Bitmap bitmap = reference.get();
                            if(bitmap != null && !bitmap.isRecycled()) {
                                bitmap.recycle();
                            }
                        } catch (Exception e) {
                            e.printStackTrace();
                        }
                    }
                }
            });
            clearReferenceQueue.start();
        }
        return referenceQueue;
    }

    public void putBitmapToMemory(String key, Bitmap bitmap) {
        memoryCache.put(key, bitmap);
    }

    public Bitmap getBitmapFromMemory(String key) {
        return memoryCache.get(key);
    }

    public void clearMemoryCache() {
        memoryCache.evictAll();
    }

    //获取复用池中的内容
    public Bitmap getReuseable(int w, int h, int inSampleSize) {
        //3.0一下不理会
        if(Build.VERSION.SDK_INT < Build.VERSION_CODES.HONEYCOMB) {
            return null;
        }
        Bitmap reuseable = null;
        Iterator<WeakReference<Bitmap>> iterator = reuseablePool.iterator();
        while (iterator.hasNext()) {
            Bitmap bitmap = iterator.next().get();
            if(null != bitmap){
                //可以复用
                if(checkInBitmap(bitmap, w, h, inSampleSize)) {
                    reuseable = bitmap;
                    iterator.remove();
                    Log.v("my_log", "复用池中找到了");
                    break;
                }
            }
        }
        return reuseable;
    }

    private boolean checkInBitmap(Bitmap bitmap, int w, int h, int inSampleSize) {
        if(Build.VERSION.SDK_INT < Build.VERSION_CODES.KITKAT) {
            return bitmap.getWidth() == w && bitmap.getHeight() == h && inSampleSize == 1;
        }
        if(inSampleSize >= 1) {
            w/=inSampleSize;
            h/=inSampleSize;
        }
        int byteCount = w*h*getPixelsCount(bitmap.getConfig());
        return byteCount <= bitmap.getAllocationByteCount();
    }

    private int getPixelsCount(Bitmap.Config config) {
        if(config == Bitmap.Config.ARGB_8888) {
            return 4;
        }
        return 2;
    }

    //加入磁盘缓存
    public void putBitmapToDisk(String key, Bitmap bitmap) {
        DiskLruCache.Snapshot snapshot = null;
        OutputStream os = null;
        try {
            snapshot = diskLruCache.get(key);
            //如果缓存中已经有这个文件 不理他
            if(null == snapshot) {
                //如果没有这个文件,就生成这个文件
                DiskLruCache.Editor editor = diskLruCache.edit(key);
                if(null != editor) {
                    os = editor.newOutputStream(0);
                    bitmap.compress(Bitmap.CompressFormat.JPEG, 50, os);
                    editor.commit();
                }
            }
        }catch (IOException e){
            e.printStackTrace();
        }finally {
            if(null != snapshot) {
                snapshot.close();
            }
            if(null != os) {
                try {
                    os.close();
                }catch (IOException e) {
                    e.printStackTrace();
                }
            }
        }
    }

    //从磁盘缓存中取
    public Bitmap getBitmapFromDisk(String key, Bitmap reuseable) {
        DiskLruCache.Snapshot snapshot = null;
        Bitmap bitmap = null;
        try {
            snapshot = diskLruCache.get(key);
            if(null == snapshot) {
                return null;
            }
            //获取文件输入流,读取bitmap
            InputStream is = snapshot.getInputStream(0);
            //解码个图片,写入
            options.inMutable = true;
            options.inBitmap = reuseable;
            bitmap = BitmapFactory.decodeStream(is, null, options);
            if(null != bitmap) {
                memoryCache.put(key, bitmap);
            }
        }catch (IOException e) {
            e.printStackTrace();
        }finally {
            if(null != snapshot) {
                snapshot.close();
            }
        }
        return bitmap;
    }
}

使用缓存来加载图片

        //先注册
        ImageCache.getInstance().init(this, "data/data/com.my.test");


    //读取数据  
        Bitmap bitmap = ImageCache.getInstance().getBitmapFromMemory(key);
        if(null == bitmap) {
            Bitmap reuseable = ImageCache.getInstance().getReuseable(80, 80, 8);
            bitmap = ImageCache.getInstance().getBitmapFromDisk(key, reuseable);
            if(null == bitmap) {
                bitmap = ImageResize.resizeBitmap(context, R.mipmap.xxx, 80, 80, false);
                ImageCache.getInstance().putBitmapToDisk(key, bitmap);
                Log.v("my_log", "从网络加载了数据");
            }else {
                Log.v("my_log", "从磁盘加载了数据");
            }
        }else {
            Log.v("my_log", "从内存加载了数据");
        }

四大图片框架对比

Glide(google),picasso(Square),Fresco(Facebook),imageLoader。

Glide的优势是三级缓存,支持GIF,webp甚至video,加载显示速度快,包体积小。默认bitmap格式RGB-565,更省内存,适合对图片没有高清要求。然后Glide缓存图片是按照ImageView的大小来缓存的,会为每种大小的ImageView缓存一次,这里会需要更大的缓存空间。

Picasso是二级缓存的,没有本地缓存。和Glide相比,他缓存了一个全尺寸的图片,根据需求的大小再压缩转换。

Fresco:综合了之前图片加载库的有点,在5.0以下的内存优化非常好,但它的不足是体积太大,所以如果应用没有太多图片需求,不推荐使用Fresco。

Glide和Picasso相比:Picasso.with()只能传入上下文。Glide.with()可以传上下文,Activity,FragmentActivity,Fragment的实例等。Picasso采用ARGB-8888,Glide采用RGB-565。Picasso加载的是全图,图片质量和清晰度比Glide高,更容易OOM。Glide可以加载GIF和webp,而Picasso能加载webp不能加载GIF。Glide缓存的图片和ImageView尺寸相同,而Picasso缓存的是全尺寸。针对于不同大小的ImageView,Glide会为他们分别缓存对应大小的图片,而Picasso只缓存全尺寸的图,使用时压缩到对应尺寸,所以Glide加载更快。

总而言之:Glide比Picasso加载速度要快,但是Glide比Picasso需要更多的空间来缓存;Glide加载图像以及磁盘缓存的方式,都优于Picasso,且Glide更有利于减少OutOfMemoryError的发生。而且Glide能加载GIF。Picasso的优势在于包体积小,加载的图片质量更高。

Glide相比ImageLoader:Glide支持图片加载优先级,使用okhttp加载,支持GIF和webp,支持缩略图,支持生命周期,并且ImageLoader不再维护。

一个比较好的图片加载框架需要实现的需求包括下面这些:

  • 可以灵活配置
  • 支持高并发,优先级设置
  • 支持不同的加载策略
  • 三级缓存
  • 支持生命周期管理
  • 对缓存策略可以扩展
  • 支持占位图片加载
  • 动图加载
  • 图片显示自适应
  • 支持请求转发,下载
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值