【ML】ML基本概念与深度学习模型的引出 1
1. 机器学习定义
-
Machine Learning
- Looking for Function
Different types of Functions
This course focuses on Deep Learning.
输入与输出的差异与机器学习的任务目标
2. 机器学习三大任务
Structured Learning(智能呢个范式)
create something with
structure (image, document)
Regression,
Classification
3. 机器学习定义回归举例
损失函数定义:
Error Surface
4. Gradient Descent 优化
Gradient Descent 最速下降法:
5. Gradient Descent 优化步骤
6. 回归步骤小姐
模型的修改与优化:
测试集与建模有差异,以7天为一个小周期或者 一个月为一个周期??
7. Linear models
Linear models are too simple … we need more sophisticated modes
需要更加复杂的function
8. 核心步骤流程
9. 模型优化
ReLU代替Sigmoid 对之前的模型进行优化:
9. 深度学习引出
进化历史: