【ML】ML基本概念与深度学习模型的引出 1

本文介绍了机器学习的基本概念,包括其定义、任务(如回归和分类)、优化方法(如GradientDescent),以及线性模型的局限。深度学习部分提及了它的进化历史和对简单模型的改进,如ReLU替代Sigmoid。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 机器学习定义

Machine Learning
Looking for Function

Different types of Functions
This course focuses on Deep Learning.
在这里插入图片描述

输入与输出的差异与机器学习的任务目标
在这里插入图片描述

2. 机器学习三大任务

Structured Learning(智能呢个范式)
create something with
structure (image, document)

Regression,
Classification

3. 机器学习定义回归举例

在这里插入图片描述

损失函数定义:
在这里插入图片描述
在这里插入图片描述
Error Surface
在这里插入图片描述

4. Gradient Descent 优化

Gradient Descent 最速下降法:
在这里插入图片描述
在这里插入图片描述

5. Gradient Descent 优化步骤

在这里插入图片描述
在这里插入图片描述

6. 回归步骤小姐

在这里插入图片描述
模型的修改与优化:
在这里插入图片描述
测试集与建模有差异,以7天为一个小周期或者 一个月为一个周期??
在这里插入图片描述

7. Linear models

Linear models are too simple … we need more sophisticated modes
需要更加复杂的function

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

8. 核心步骤流程

### 7. Linear models

9. 模型优化

ReLU代替Sigmoid 对之前的模型进行优化:
在这里插入图片描述
在这里插入图片描述

9. 深度学习引出

进化历史:
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大江东去浪淘尽千古风流人物

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值