|洛谷|树形DP|P1270 “访问”美术馆

本文介绍了一道洛谷平台上的树形动态规划题目,通过定义状态f[i][j]为以节点i为根且花费时间为j时的最优值,并给出具体的转移方程。文章重点在于理解如何在规定的总时间内回到起点,且需确保警察到来前能够返回。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Luogu传送门
树形DP,设 f[i][j] 为以 i 为根花费j时间的最优值。
转移方程见程序
注意:要在规定时间回到起点,警察到来之前就必须!注意是之前!

#include<cstdio>  
#include<algorithm>  
#include<cstring>  
#include<vector>
#define ms(i,j) memset(i,j, sizeof i);
using namespace std;
int T;
int cnt = 1;
int f[1005][1005];
int dp(int u)
{
    int t, v;
    scanf("%d%d", &t, &v);
    t<<=1;
    if (v)
    {
        for (int i=t;i<=T;i++)
        {
            f[u][i] = min(v, (i-t)/5);
        }
    } else
    {
        int x1;  dp(x1=(++cnt)); 
        int x2;  dp(x2=(++cnt));
        for (int j=t;j<=T;j++)
        {
            for (int k=0;k<=j-t;k++)
            {
                f[u][j] = max(f[u][j], f[x1][k]+f[x2][j-k-t]);
            }
        }
    }
}
int main()  
{  
    scanf("%d", &T);--T; 
    dp(1);
    printf("%d\n", f[1][T]);
    return 0;  
}  
### 关于最小顶点覆盖问题使用树形动态规划的解法 #### 定义与目标 最小点覆盖是指在一个图 \( G = (V, E) \) 中选取尽可能少的顶点构成一个集合 V',使得每条边至少有一个端点在这个集合中。当考虑一棵树时,可以通过树形动态规划来求解这个问题。 #### 动态规划状态定义 为了应用树形 DP 来解决问题,在每个节点 u 上维护两个状态 dp[u][0] 和 dp[u][1]: - `dp[u][0]` 表示不选择当前节点 u 的情况下子树内的最优解。 - `dp[u][1]` 则表示选择了当前节点 u 后其子树内达到最优解所需的最少士兵数量[^4]。 #### 转移方程推导 对于每一个非叶子节点 u 及其孩子 v_i ,转移关系如下: 如果不选 u (`dp[u][0]`) 那么必须选择它的所有直系后代以确保这些边被覆盖;如果选了 u(`dp[u][1]`) 就可以选择性地决定是否要选某个特定的孩子节点 v_i 。因此有: \[ \begin{aligned} &dp[u][0]=\sum_{i}(dp[v_i][1]) \\ &dp[u][1]=1+\sum_{i}\min(dp[v_i][0],dp[v_i][1]) \end{aligned} \] 这里加 1 是因为选择了节点 u 自身作为一个哨兵位置。 #### 初始化与边界条件处理 初始化时,对于叶节点而言,显然不需要放置守卫即可满足局部最优(即 dp[leaf_node][0]=0),但如果强制要求在此处设置观察员则只需一人(即 dp[leaf_node][1]=1)。最终答案将是根节点两种情况下的较小者 min(dp[root][0], dp[root][1])。 ```python def dfs(node, parent): is_leaf = True for neighbor in adj[node]: if neighbor != parent: is_leaf = False dfs(neighbor, node) dp[node][0] += dp[neighbor][1] dp[node][1] += min(dp[neighbor][0], dp[neighbor][1]) if is_leaf: dp[node][0] = 0 dp[node][1] = 1 n = int(input()) adj = [[] for _ in range(n + 1)] for i in range(n - 1): u, v = map(int, input().split()) adj[u].append(v) adj[v].append(u) INF = float('inf') dp = [[0, 0] for _ in range(n + 1)] dfs(1, None) print(min(dp[1])) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值