[资源推荐] 必须收藏的两个查找论文和代码实现的网站!

本文推荐了PaperswithCode和Browsestate-of-the-art两个网站,分别用于查找带代码实现的机器学习论文及各领域最佳算法论文。PaperswithCode索引了约5万篇论文和1万个代码库,可按关键词、流行程度、Star数排序;Browsestate-of-the-art则提供了16个大类、950+子任务的SOTA算法及其代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考自:https://juejin.im/post/5c57f86c51882562002aec03

无论是研究方向是 AI 方面的学生,或者是做机器学习方面的算法工程师,在掌握基础的机器学习相关知识后,都必须掌握搜索论文的技能,特别是研究或者工作领域方向的最新论文,更进阶一点的技能,就是可以复现论文的算法,这是在论文作者没有开源代码的时候的一个解决办法,但是在能够掌握这项技能前,我们希望能够搜索到其他人复现的代码。

因此,今天我会推荐两个相关的网站,并且都是同个团队的成果,这个两个网站,一个可以用于展示带有代码实现的论文算法,另一个给出了多个领域最新最好的算法论文结果。

1. Papers with Code

首先给出这个网站的网址:

paperswithcode.com

这是 Reddit 的一个用户 rstoj 做的一个网站,将 ArXiv 上的最新机器学习论文与 Github 上的代码(TensorFlow/PyTorch/MXNet/等)对应起来。相比之前推荐的阅读 ArXiv 的网站,这位用户做出了满足更多研究者的最大需求--寻找论文算法实现的代码!

这个项目索引了大约 5 万篇论文(最近 5 年发布在 arxiv 上的论文)和 1 万个 Github 库

你可以按标题关键词查询,或者研究领域关键词,如图像分类、文本分类等搜索,也可以按流行程度、最新论文以及 Github 上 Star 数量最多来排列。这个网站能让你跟上机器学习社区流行的最新动态。

首先是看下这个网站大概长什么样的:

上图给出的是按照流行程度来排列,对每篇论文给出了题目、作者、投稿的会议或者顶会,一些简介,比如是否当前领域最先进算法,标签(即关键词,论文研究的方向)和采用的代码框架(比如是 Pytorch 还是 TensorFlow 或者其他框架),论文和代码链接,还有当前 Github 的 Star 数量,以及每小时增加的 Star 数量。

如果是按照 Github Star 数量最多排列,如下图所示:

可以看到最多 Star 数量前两位都是 TensorFlow ,第三位是 Caffe 框架。

另外,如果我们在搜索框输入研究领域的关键词,比如图像分类--Image Classification,搜索结果如下所示:

它会展示当前包含该领域带有论文的共 250 篇论文,然后是展示几个数据集上效果最好的算法和论文,以及开源项目(如果开源了),然后就是子领域--Subtasks,最后是该领域的有代码的论文,按照 Github 上 Star 数量来排列。


2. Browse state-of-the-art

同样先给出网址:

paperswithcode.com/sota

这个网站主要是解决另一个问题--寻找一个领域目前最好的(State of the art, Sota)算法的论文以及实现代码。这也是刚接触到一个新领域时候,必须要做的事情,先找到最新最好的算法论文,然后根据这篇论文的代码实现,先跑下代码,接着再去了解细节,或者是根据它的参考论文,来学习这个领域最近几年的论文(一般是 3 年到 5 年内的),逐渐熟悉这个领域的研究方向和难点所在。

还是 Papers with Code 的团队做出了一个可以查询领域最新算法的网站,它总共包含了 16 个大类,950+的单独子类任务,500+个评估结果(包含 Sota 结果)、700+数据库,8000+论文。如下图所示:

16 个分类包括:

  • 计算机视觉
  • 自然语言处理
  • 医疗
  • 研究方法
  • 杂类
  • 语音
  • 游戏
  • 图(Graphs)
  • 时间序列
  • 音频
  • 机器人
  • 音乐
  • 推理
  • 计算机编码
  • 知识库
  • 对抗性(Adversarial)

点击计算机视觉这个大类,可以看到具体又划分了450+个子任务,如下图所示:

这里可以继续点击进去每个子任务,比如图像分类,然后会得到如下图所示:

上图其实就是在刚刚介绍 Paper with Code 网站时候,介绍搜索领域关键词例子中的图例了。


最后,再给出两个网站的网址:

### 提供论文开源代码的存储平台与网站 对于寻找提供论文开源代码的存储平台与网站的需求,以下是几个重要的资源: #### Papers With Code Papers With Code 是由 Atlas ML 推出的一个免费、开源的机器学习领域的论文代码分享平台。它旨在解决论文与其对应实现代码之间的差距问题[^2]。此平台收录了大量的机器学习深度学习相关的论文及其对应的开源代码链接。 #### AMiner AMiner 平台是一个综合性的研究者论文搜索工具,提供了强大的中英文论文检索功能,并且部分论文还包含了人工编辑整理后的代码链接。这对于需要查找中文资料或者希望获得更全面的信息的人来说非常有用。 #### GitHub 作为全球最大的开发者社区之一,GitHub 上有大量的科研人员上传他们的研究成果及相关源码。可以通过直接在平台上输入感兴趣的论文题目或作者名字来进行搜索[^3]。通常情况下,如果某篇论文有公开可用的实现版本,则很可能可以在该用户的个人主页找到相关仓库地址。 #### TensorFlow Hub & PyTorch Hub 这两个分别是谷歌开发框架Tensorflow 脸书主导下的深度学习库Pytorch 所推出的官方预训练模型分发站点。它们不仅提供了丰富的即插即用型组件集合,同时也鼓励第三方贡献自己的作品至其中,因此也是获取高质量AI算法实现的好去处。 #### ResearchGate / ArXiv 虽然严格意义上讲不是专门用于发布软件工程产物的地方,但像ResearchGate这样的学术社交网络允许用户自行附加额外文档到已发布的成果之上;而arxiv.org作为一个电子预印本服务器,在某些学科分类下也会注明是否有随附的技术报告附件可供下载查阅。 综上所述,上述提到的各种在线服务都可以成为探索最新技术趋势并深入理解其实现细节的有效途径。 ```python import requests def fetch_paper_code(paper_title): base_url = "https://paperswithcode.com/api/v1/papers/" response = requests.get(f"{base_url}{paper_title}") if response.status_code == 200: data = response.json() code_link = data['official']['url'] if 'official' in data and 'url' in data['official'] else None return { "title": paper_title, "code_url": code_link } else: raise Exception("Paper not found or API error.") example_result = fetch_paper_code('iccv_2023_project') print(example_result) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值