阿里新零售中的智能补货(I)— 库存模型

本文介绍了阿里新零售中智能补货的重要性,强调了库存模型在供应链中的角色。文章探讨了库存理论,包括安全库存模型,以及现实中的限制,如供应商交付时间、成本和仓库产能。此外,提出了一种基于整数线性规划的简单补货模型,以最小化库存周转天数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章作者:阿里零售通算法团队

出品社区:DataFun


导读: 零售通作为阿里巴巴新零售的八路大军之一,肩负着“共建智能分销平台”和“让百万小店拥抱DT时代”的重要使命。一方面,我们通过线上平台(零售通APP)将零售品牌商的货品展现给小店的店主,并提供交易渠道让店主进行批发进货;另一方面,我们通过天猫小店和如意POS对小店进行赋能,帮助他们在线下的销售中能迅速发现C端消费者的需求,提升小店的坪效。 在这种B2B2C的创新分销模式中,智能化的供应链体系不仅要保证平台能持续稳定的为小店进行供货,还要控制供应链成本,让数字化渠道成为最经济的分销方式。

我们在不断迎接新零售模式下供应链各种挑战的过程中,逐渐沉淀出一套利用大数据和智能算法解决供应链补货的方法论,在这里与大家分享。本系列分为两部分:第一部分主要介绍智能补货的库存模型;第二部分会详细介绍补货模型中的销量预测算法以及我们在预测中用的一些经验和方法论。 本篇将对第一部分,即智能补货的库存模型进行介绍。

--

01 为什么需要智能补货

零售通作为连接商家、小店和C端消费者的数字化分销平台,保障货品供应的持续性和稳定性成为供应链的首要目标之一。不同于天猫、淘宝等直接面向C端消费者的平台,零售通直接触达的用户是小店的店主。他们在平台上进行采购的主要目的之一是用于补货。如果此时需要补充的货品在平台上已售罄,这不仅会损失平台的成交额(GMV),也造成了店内的货品供应不足,导致小店的收入降低。另一方面,如果为了最大化保障供应率,而将一大批货品囤积在零售通的仓库中进行售卖,则有可能导致某些货品长时间卖不出去,增加了库存周转时间和滞销率,降低了供应的效率。

因此,供应链补货的目标是通过供应方式(供应时间,供应数量,供应周期等)的决策达到仓库中需求和供给的平衡,使得仓库中货品的库存既可以最大化满足用户的需求,也能将库存周转时间控制在一定范围之内,保证供应的效率。(因此在很多行业中,供应链补货又叫做“库存平衡”。)

file

在某些传统行业中,供应链的补货任务大部分还是通过人工完成。一方面,传统行业的渠道信息数字化大多构建得不完善,无法完全通过数据实现精准补货;另一方面,传统行业的计算能力有限,在求解某些优化问题中无法实现大规模的复杂计算。而零售通背靠阿里巴巴集团这颗参天大树,不仅在数据获取渠道上突破了线下渠道数据的限制,还在计算资源上得到了充分的保证。这些优势为零售通供应链在智能补货算法的应用和发展提供了成长的土壤,使得通过基于机器学习和运筹学构建的智能补货算法体系成为可能。

--

02 库存理论(inventory theory)

无论是传统零售还是新零售,货品都会经历从生产制造到分销、再到消费整个周转过程。分销中的每个环节都需要维持一定货品库存来应对需求的不确定性。因此,分销商或者零售通都需要解决以下三个问题并作出正确的决策:

  1. 未来某段时间的需求是多少?

  2. 需要为未来的需求准备多少货?

  3. 每天的库存水位是多少?

无论作出何种决策,这三个问题都可以用“进-销-存”模型来描述。

file

该模型需要进行连续决策,即以上三个问题不是一次性决策,而需要周而复始的不断进行下去。另外,上一次的决策结果(补货数量)会影响下一次决策状态(当前库存)。用数学可以对此过程进行如下描述:

file

其中

### 使用 Python 开发亚马逊运营智能补货系统的方案 #### 1. 需求分析与技术选型 构建一个基于人工智能智能补货系统需要综合考虑需求预测、库存管理和供应商优化等多个方面。根据已有资料[^1],该系统的核心模块包括以下几个部分: - **库存预测**:利用 LSTM 模型对未来一段时间内的商品需求进行预测。 - **计算补货量**:通过 Java 或其他编程语言实现逻辑运算来决定具体的补货数量。 - **调用 API**:借助 Spring Boot 提供的服务接口完成模型部署和数据交互。 - **供应商选择优化**:结合算法评估不同供应商的成本和服务质量。 对于本项目而言,Python 是一种非常适合的语言,因为它拥有强大的机器学习库支持(如 TensorFlow 和 Keras),同时也具备良好的 Web 接口开发能力(如 Flask/Django)。以下是具体的技术栈建议: - 数据处理:Pandas, NumPy - 时间序列建模:TensorFlow/Keras (LSTM) - 后端服务框架:Flask/ FastAPI - 文件操作及多线程管理:`threading`, `os` --- #### 2. 实现步骤详解 ##### (1)时间序列预测——基于 LSTM 的库存需求预测 为了准确预估未来某段时间内某种商品可能售出的数量,可以采用长期短期记忆网络(Long Short-Term Memory Network),即 LSTM 来训练历史销售记录并生成预测值。下面给出一段简单的代码示例展示如何搭建这样一个神经网络结构: ```python import numpy as np from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, LSTM def create_lstm_model(input_shape): model = Sequential() model.add(LSTM(50, activation='relu', input_shape=input_shape)) model.add(Dense(1)) # 输出层只有一个节点代表预测销量 model.compile(optimizer='adam', loss='mse') return model # 假设我们已经有了标准化后的输入X_train和目标y_train model = create_lstm_model((n_timesteps, n_features)) history = model.fit(X_train, y_train, epochs=200, batch_size=72, validation_data=(X_test, y_test), verbose=2) predicted_sales = model.predict(new_input_data) # 对新数据做预测 print(f'Predicted Sales: {predicted_sales}') ``` 此段脚本定义了一个基础版的时间序列回归问题解决方法。 ##### (2)补货计算逻辑设计 一旦获得了预期销售额之后,则需进一步确定实际所需补充货物的具体数目。这一步骤通常涉及复杂的业务规则判断,比如最小订货单位(MOU)限制或是经济批量订购EOQ(Economic Order Quantity)原则等因素考量。虽然原始描述提到的是Java实现方式,但在Python环境下同样可以通过编写函数轻松达成目的如下所示: ```python def calculate_reorder_quantity(current_stock_level, predicted_demand, safety_stock, moq=None): """ Calculate the reorder quantity based on current stock level and forecast demand. Parameters: current_stock_level (float): Current available inventory. predicted_demand (float): Forecast sales volume over lead time period. safety_stock (float): Safety buffer to prevent out-of-stock situations. moq (int or None): Minimum order quantity required by supplier. Returns: int: Recommended number of units to restock. """ target_inventory = max(predicted_demand + safety_stock, 0.) proposed_order_qty = round(target_inventory - current_stock_level) if moq is not None: adjusted_order_qty = ((proposed_order_qty // moq)+1)*moq if proposed_order_qty % moq !=0 else proposed_order_qty else: adjusted_order_qty = proposed_order_qty final_order_amount =max(adjusted_order_qty ,0 ) return final_order_amount example_result =calculate_reorder_quantity(80., 120., 30., moq=50) print(f'Recommended Re-order Amount:{example_result}') ``` 上述例子展示了基本的再购入决策流程,并考虑到最低起订门槛的情况。 ##### (3)集成外部通知机制 当触发特定条件时(例如低于安全阈值或者达到最大存储容量上限等情况发生之时),应当及时向相关人员发出警报提醒以便采取相应措施加以应对。这里推荐使用第三方插件PushPlus推送至微信平台作为即时通讯渠道之一选项[^2]: ```python import requests def send_wechat_notification(title,message,push_token="your_push_plus_token"): url=f"http://www.pushplus.plus/send?token={push_token}&title={title}&content={message}" response=requests.get(url).json() status=response['code'] msg=response['msg'] print('Notification Status:',status,'Message:',msg) send_wechat_notification("Stock Alert","Product A has fallen below safe levels.") ``` 以上片段演示了怎样发送一条包含标题跟正文内容的消息给指定接收者账户下的设备终端上显示出来. --- #### 3. 总结说明 综上所述,整个解决方案涵盖了从数据分析挖掘到最终执行反馈闭环全过程各个环节的设计要点介绍完毕。值得注意的地方在于每一块单独拿出来都可以扩展成为更加深入细致的研究课题方向继续探讨下去。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值