最近在开始学习深度学习项目,就介绍一下这个项目的环境配置。
首先介绍一下需要的必备的一些工具AnaConda、PyTorch、PyCharm。
AnaConda相当于一个hub主要解决软件环境依赖问题的 conda 包管理系统,可以很方便地解决多版本python并存、切换以及各种第三方包安装问题。
PyTorch 是一个开源的 Python 深度学习框架,支持生产就绪、分布式训练、强大的生态系统和云支持。(不同的PyTorch对应不同版本的包)
PyCharm适用于数据科学和 Web 开发的 Python IDE,就相当于个Visual Studio。
软件安装
- PyCharm安装,PyCharm这个直接自己在官网安装自己需要的版本就行了,始终是觉得这个东西吧,并不是版本越高越好,而是适合自己的更好。附上https://www.jetbrains.com/pycharm/download/other.html下载网址。我这个新冠项目用的版本是PyCharm 2022.1.3版本。
想学破解联系我哈,写出来会审核不通过。 - anaconda安装
直接安装就好了,注意千万不要装在C盘安装后会出现
创建深度学习环境
创建环境
conda create -n li_3_8 python=3.8
激活环境
conda activate li_3_8`
选中创建环境,需要在pycharm中选择你刚才创建的环境。以后所有的项目都要选择你需要的环境。否则就没法运行!
点击右下角解释器设置
add添加
找到已有环境进行添加
安装torch等环境 (torch安装时间大概在一个半小时左右)
输入这个代码到conda
pip install torch==1.10.1+cu102 torchvision==0.11.2+cu102 torchaudio==0.10.1 -f https://download.pytorch.org/whl/cu102/torch_stable.html
安装pandas(是一个用于科学计算的库,提供了许多数学,科学和工程计算的功能,建立在Numpy上,提供计算功能,例如处理矩阵)
pip install pandas
安装matplotlib(数据可视化的库,提供了各种绘图函数和工具。可用于创建各种类型图表和图形)
pip install matplotlib
安装scikit-learn(用于机器学习的库,提供了各种机器学习算法和工具,建立在Numpy和Scipy之上,并提供用于训练和评估模型的函数和工具)
pip install scikit-learn
所需环境安装成功