1. 问题
假设有 n n n个独立同分布的样本: X 1 , ⋯ , X n ∼ f X ( x ) X_1,\cdots,X_n \sim f_X(x) X1,⋯,Xn∼fX(x),下面给出两个统计量:
- θ 1 ^ = max ( X 1 , ⋯ , X n ) \hat{\theta_1} = \max(X_1, \cdots, X_n) θ1^=max(X1,⋯,Xn)
- θ 2 ^ = min ( X 1 , ⋯ , X n ) \hat{\theta_2} = \min(X_1, \cdots, X_n) θ2^=min(X1,⋯,Xn)
求解这俩新随机变量的分布。
2. 最大值统计量
根据分布函数定义:
F
θ
1
^
(
x
)
=
P
(
θ
1
^
≤
x
)
F_{\hat{\theta_1}}(x) = \mathrm{P}(\hat{\theta_1} \leq x)
Fθ1^(x)=P(θ1^≤x)
根据统计量的具体表达方式,即为:
F
θ
1
^
(
x
)
=
P
[
max
(
X
1
,
⋯
,
X
n
)
≤
x
]
F_{\hat{\theta_1}}(x) = \mathrm{P}[\max(X_1, \cdots, X_n) \leq x]
Fθ1^(x)=P[max(X1,⋯,Xn)≤x]
下面需要引入一些与概率无关的东西:
集合最大值小于某数值,等价于集合中所有元素都小于某数值。
于是:
F
θ
1
^
(
x
)
=
P
(
X
1
≤
x
,
⋯
,
X
n
≤
x
)
F_{\hat{\theta_1}}(x) = \mathrm{P}(X_1\leq x, \cdots, X_n \leq x)
Fθ1^(x)=P(X1≤x,⋯,Xn≤x)
根据独立同分布条件,这个等价于:
F
θ
1
^
(
x
)
=
∏
i
=
1
n
∫
−
∞
x
f
X
i
(
x
)
d
x
=
F
n
(
x
)
\begin{aligned} F_{\hat{\theta_1}}(x) &= \prod_{i = 1}^n\int_{-\infin}^{x}f_{X_i}(x)\mathbf{d}x\\ &= F^n(x) \end{aligned}
Fθ1^(x)=i=1∏n∫−∞xfXi(x)dx=Fn(x)
如果想要PDF,就对
x
x
x变量再求个微分。这玩意是积分上限函数,所以微分直接就是积分原函数了:
f
θ
1
^
(
x
)
=
n
F
X
n
−
1
(
x
)
f
X
(
x
)
f_{\hat{\theta_1}}(x) = nF^{n-1}_X(x)f_X(x)
fθ1^(x)=nFXn−1(x)fX(x)