卷积操作中的 SAME padding 理解

本文深入探讨了卷积神经网络中Padding属性为SAME时的计算原理,解析了如何保持输出层与输入层尺寸一致的技巧,并通过具体实例帮助读者理解Padding值的计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

公式:

 

个人理解:

如果卷积时,设置padding的属性值是 SAME ,则表示【输出层尺寸 = 输入层尺寸】,此时我们就可以根据上面的公式来反推出padding的值(也就是 P 的值)!

 

例子:

 

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值