VannaAI 介绍及使用 - 第二篇

VannaAI 使用指南

第一篇章对Vanna的原理做了一些介绍,本篇章将对其如何使用进行说明

 本文介绍三种VannaAI的使用方式:

1.在官网Calab上使用

2.本地通过jupyter使用

3.本地通过pycharm使用

一、在官网Calab上使用

Vanna官网提供了快捷体验的方式入门,那就是通过Calab运行,通过一些预先准备好的数据体验其功能。

1.进入官网首页

Docs下方提供了选项Getting Started-try it in jupyter

2.查看官网文档

会调转到官方文档的页面,快速入门,这里可以看到入门方式有两种,使用实例数据快速入门和使用自己的数据快速入门,这一章我们先讲使用实例数据快速入门,点击右边的使用colab运行。

 3.打开colab

点击了run using colab后会打开一个新的页面,在colab中运行app.ipynb

        这里做一下说明:

        1).因为是示例数据体验,所以vanna官网提前准备了相关数据及数据库相关信息。

        2).我们只需要将api_key做一下修改,这里也不需要你去填写真实的apikey,只用将你在vanna官网中注册账号时的邮箱替换掉[email protected]就可以了(在第一章中已经展示了注册过程)。

        3).在vn.ask("What are the top 10 albums by sales?")中,已经默认设置了问题,你也可以手动修改问题,目前我们只是体验功能,修改邮箱后可以直接点击运行,后面再换问题体验。

4.初始化运行

点击运行后,就会去加载一些vanna的资源,然后会出现一些提示框,点击仍然运行,然后资源加载完成会出现一个验证码输入框,这时需要你登录你的邮箱去提取验证码。

5.输入验证码

输入验证码回车,就会输出很多内容

 1).首先是一些prompt的生成内容,从前面工作流程的介绍我们指导,当用户提出问题后,vanna会根据问题去向量数据库匹配相关度最高的一些DDL,Documention和sql问答对,然后将这些数据和问题形成prompt发送给LLM去处理。

2).第二部分是生成的查询sql,这个就是LLM根据前面的prompt针对vn.ask写出的sql了,问题不同,sql也会变化。我们可以根据sql判断是否与我们的问

<think>好的,用户想在DB-GPT中创建一个工作流,当用户输入动物名称时,系统能返回该动物的简介。我需要根据提供的引用内容来指导他们如何操作。首先,引用[1]提到在AWEL工作流界面复制流程进行编辑,所以可能需要先复制现有的工作流,比如db_expert_assistant,然后进行修改。接着,用户需要创建或调整组件,可能需要数据库查询功能。引用[2]提到Vanna可以简化SQL查询,这里可能需要连接数据库,用自然语言生成SQL查询来获取动物信息。然后,需要将输入参数绑定到SQL查询,再处理结果返回给用户。可能需要测试和调整流程,确保输入正确触发查询并返回简介。最后保存并发布工作流,让用户使用。还需要考虑是否要添加错误处理,比如动物不存在的情况。可能需要分步骤指导用户操作界面,点击复制、修改名称、拖拽组件、绑定参数等。确保用户按照步骤一步步完成,并验证结果是否正确。</think>### 分步构建动物简介工作流的步骤 1. **复制现有工作流模板** - 进入AWEL工作流界面,找到`db_expert_assistant`模板 - 点击右上角【复制】按钮,自定义名称如`animal_intro_workflow`[^1] 2. **创建数据库查询组件** ```python from dbgpt.core.awel import DAG, HttpTrigger, TransformStream from vanna import VannaAI # 初始化Vanna AI组件(需提前配置API密钥) vanna = VannaAI(api_key="your_key", model="gpt-3.5-turbo") # 创建数据库连接组件 @TransformStream() def connect_db(animal_name: str): # 这里替换为实际数据库连接配置 return {"animal": animal_name, "conn": "postgresql://user:pass@host/db"} ``` 3. **构建自然语言转SQL模块** ```python @TransformStream() def generate_sql(inputs: dict): query = f"请生成查询{inputs['animal']}简介的SQL" sql = vanna.generate_sql(query) # 示例输出:SELECT info FROM animals WHERE name = ? return {"sql": sql, "params": (inputs['animal'],)} ``` 4. **添加数据库执行组件** ```python @TransformStream() def execute_query(inputs: dict): with psycopg2.connect(inputs['conn']) as conn: cursor = conn.cursor() cursor.execute(inputs['sql'], inputs['params']) return {"result": cursor.fetchone()[0]} ``` 5. **配置工作流连接关系** ```python with DAG("animal_introduction_workflow") as dag: trigger = HttpTrigger("/animal_query") db_conn = connect_db() sql_gen = generate_sql() query_exec = execute_query() trigger >> db_conn >> sql_gen >> query_exec ``` 6. **设置输出格式化** ```python @TransformStream() def format_output(result: dict): return f"您查询的{result['animal']}信息:\n{result['result']}" ``` 7. **测试与部署** - 在测试界面输入`老虎` - 预期输出包含老虎的栖息地、特征等数据库存储信息 - 点击【发布】按钮完成工作流部署
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值