- 博客(5)
- 收藏
- 关注
原创 柱状图,条形图和折线图进阶的绘制方法
本文介绍了使用Matplotlib绘制多种堆叠型统计图表的方法。主要内容包括:1)堆积柱状图和条形图的实现,通过bottom/left参数设置堆叠数据;2)多数据并列柱状图和平行条形图的绘制,使用numpy调整柱体位置;3)堆积折线图的创建,用stackplot()函数填充区域;4)间断条形图(broken_barh)展示离散数据;5)阶梯图(step)绘制离散点间的阶梯变化。每种方法均提供完整Python代码示例和可视化效果图,适用于不同场景的数据对比展示。
2025-06-24 16:20:21
305
原创 利用matplotlib进行简单图表的绘制(2)
本文介绍了四种常见的数据可视化图表绘制方法:气泡图、棉棒图、箱线图和误差棒图。通过matplotlib库的函数实现,包括scatter()绘制气泡图展现三维数据、stem()绘制棉棒图展示离散有序数据、boxplot()绘制箱线图分析数据分布特征,以及errorbar()绘制误差棒图显示数据误差范围。每种方法都配有代码示例和参数说明,演示如何生成随机数据并自定义图表样式。这些可视化技术能有效呈现不同维度的数据特征,适用于各种数据分析场景,帮助用户直观理解数据分布规律和测量误差。
2025-06-23 17:01:34
306
原创 利用matplotlib进行简单图表的绘制(1)
本文介绍了使用Matplotlib绘制四种常见统计图表的方法。首先通过设置字体参数解决中文显示乱码问题,然后详细讲解了:1)柱状图(bar)展示定性数据分布;2)直方图(hist)显示定量数据分布;3)饼图(pie)呈现分类占比;4)极线图(polar)在极坐标中绘制数据。每种图表都给出了函数说明、参数解释、完整代码示例和效果图,涵盖了对齐方式、颜色填充、标记样式等常见自定义选项。这些可视化方法适用于数据分析、结果展示等场景,能直观反映数据分布特征。
2025-06-20 17:25:56
340
原创 matplotlib的快速入门
摘要:本文介绍了Matplotlib中常用绘图函数的使用方法,包括折线图plot()、散点图scatter(),以及坐标轴设置函数xlim()/ylim()、标签设置函数xlabel()/ylabel()等。详细说明了每个函数的调用参数和功能,如网格线grid()、参考线axhline()、注释文本annotate()和text()等。最后通过示例代码展示了如何综合运用这些函数绘制包含折线图、散点图、网格线、参考区域和各种注释的复合图表,并设置坐标轴范围、标签和图例等元素。该文为Python数据可视化提供了
2025-06-19 16:34:44
642
原创 Anaconda快速入门
《Anaconda环境与包管理简明指南》 本文介绍了Anaconda的环境管理和包管理基础操作。环境管理方面包含创建(conda create)、激活(activate/source activate)、删除(conda remove)环境,以及环境导入导出功能(conda env export/import)。包管理部分对比了conda和pip工具,详细说明如何使用conda进行包搜索(search)、安装(install)、更新(update)、删除(remove)和查看(list)等操作。文中以pyt
2025-01-15 18:44:22
136
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人