LangChain学习笔记(一)-LangChain简介

LangChain学习笔记(一)-LangChain简介

langChain是一个人工智能大语言模型的开发框架,主要构成为下图。

在这里插入图片描述

一、核心模块

(一)模型I/O模块

负责与现有大模型进行交互,由三部分组成:

  • 提示词管理部分:用于模版化、动态选择和管理模块输入;
  • 语言模型部分:通过接口调用各类大模型,如遇需要调用现有的模型,如chatglm可以去其官网查看调用api;

在这里插入图片描述

  • 输出解析器:负责从模型的返回中提取信息。

(二)检索模块

能从外部检索用户特定数据并将其整合到大模型中。

(三)链模块

它定义为对一系列组件的组合调用,其中LangChain提供了LCEL(LangChain expression language)表达式语言来实现链。

(四)记忆模块

用于保存应用运行期间的信息,以维持应用的状态。

(五)代理模块

其核心思想是用大模型来选择一系列需要采取的行动,其包含了4个关键组件。

  • Agent:通过模型和提示词来决定下一步操作的决策组件。这个组件的输入包括可用工具列表、用户输入、之前执行的步骤。基于这些输入Agent会产生下一步的操作或直接返回结果。
  • Tool:代理调用函数,对于构建智能代理至关重要。需要对这些工具进行合适的描述,以便正确被调用。
  • ToolKit:LangChain官方提供的工具包。
  • AgentExecutor:代理运行时环境,负责调用代理并执行其选择的动作。内部有对不同情况(工具出错,选取了不存在工具,结果无法解析)的处理,还有日志功能。

(六)回调模块

用于在特定操作时,调用预定的程序,类似触发器。

二、快速开始

import os

from typing import List
from langchain_openai import ChatOpenAI
from langchain.schema import BaseOutputParser
from langchain.prompts import ChatPromptTemplate




# 定义模型
llm = ChatOpenAI(
    temperature=0.95,
    model="GLM-4-Air",
    openai_api_key="9c9ef279e10a0a244ba097f5699f86b8.F0yarghEKK7OeSpI",
    openai_api_base="https://open.bigmodel.cn/api/paas/v4/"
)

# 定义解析器
class CommaSeparatedListOutputParser(BaseOutputParser[List[str]]):
    """输出解析器:将逗号分割的词组,解析成词组"""
    def parse(self, text: str) -> List[str]:
        return text.strip().split(",")

# 定义提示词模板
template = "你是一个生成逗号分隔的列表助手,用户会传入一个问题,你生成该问题的5个答案,并以逗号分隔的形式返回。只返回逗号分隔的内容,不要包括其他内容"
human_template = "{text}"

chat_prompt = ChatPromptTemplate.from_messages([
    ("system" , template),
    ("human" , human_template),
])

# 定义链
first_chain = chat_prompt | llm | CommaSeparatedListOutputParser()


if __name__ == "__main__":
 
    print(first_chain.invoke({"text": "我开发了一个厨房模拟器,请给该应用取个名字"}))



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值