Deepoc大模型在具身智能中的技术实现核心在于构建多模态感知-决策-执行闭环,并通过算法架构创新与硬件适配突破物理世界的复杂约束。以下从技术架构、核心模块实现、训练优化三个维度展开分析:
一、技术架构设计:分层端到端与多模态融合
-
分层端到端框架
感知层:多模态大模型(如VLM、CLIP)对视觉、语言、触觉等输入进行联合编码,生成环境语义表征。例如,CLIP将图像与文本映射到同一向量空间,支持跨模态检索与指令理解。
决策层:大语言模型(LLM)解析任务目标,生成结构化中间表示(如任务树、状态机)。例如,GPT-4V可将“将杯子放到桌子上”分解为“定位杯子→抓取→路径规划→放置”等步骤,并输出自然语言指令序列。
执行层:轻量化策略模型(如MPNet、PPO+MPC)将指令映射为机器人动作。典型方案包括:
模仿学习:通过专家轨迹数据训练策略,结合大模型生成伪标签提升数据效率。
强化学习:利用大模型生成奖励函数(如逆强化学习)或直接优化策略,解决稀疏奖励问题。
2.多模态融合技术
特征对齐:通过跨模态注意力机制(如Transformer)对齐视觉、语言、动作数据。例如,OpenVLA模型将环境图像与语言指令拼接为联合输入,通过共享编码器提取特征。
时序建模:使用LSTM或Transformer-XL处理动态交互数据,捕捉长程依赖关系。在机器人抓取任务中,时序模型可预测物体运动轨迹并调整抓取策略。
二.本地化智能执行(Gemini Robotics On-Device)
1. 端到端多模态融合架构
- 视觉-语言-动作联合编码:基于Gemini 2.0的多模态Transformer架构,将视觉(RGB-D图像)、语言指令(文本)和动作历史(关节角度序列)拼接为统一输入,通过共享注意力机制实现跨模态特征交互。例如,视觉编码器采用ViT-H架构提取物体几何特征,语言编码器使用PaLM-Lite处理自然语言指令,动作编码器通过LSTM建模时序依赖。
- 轻量化推理引擎:采用TensorRT-LLM优化库,将模型推理延迟压缩至200ms以内。通过算子融合(如FlashAttention+GEMM)和内存复用技术,适配NVIDIA Jetson Orin等边缘计算设备,支持FP16混合精度计算。
2.零样本任务泛化机制
- 隐式动作空间映射:通过对比学习预训练,建立视觉特征与动作语义的关联。例如,对“抓取杯子”指令,模型从历史数据中提取“手部接近→指尖接触→握力调整”的动作模式,映射到当前场景的物体位姿参数。
- 动态安全约束注入:在输出层嵌入物理仿真验证模块,实时计算动作的碰撞概率和力矩范围。若预测到关节力超过安全阈值(如>20N),自动触发降级策略(如降低抓取速度或切换抓取模式)。
3.复杂任务规划与泛化
1. 符号-神经混合规划框架
- LLM任务分解器:基于GPT-4V的思维链(CoT)能力,将自然语言指令解析为层次化任务树。例如,“倒牛奶”分解为
[定位容器, 打开盖子, 倾倒, 擦拭残留]
,每个节点关联语义约束(如“盖子需旋转90°”)。 - 运动策略库集成:预训练技能策略(如抓取、倾倒)的参数化动作空间,通过蒙特卡洛树搜索(MCTS)选择最优技能序列。每个技能执行时调用逆运动学求解器生成关节轨迹,确保末端执行器轨迹平滑。
-
2. 闭环可行性验证
- 几何状态预测:使用MuJoCo物理引擎模拟动作执行后的环境变化,预测物体位姿和碰撞风险。例如,倾倒牛奶时模拟液体流动轨迹,避免洒漏。
- 动态重规划机制:当检测到环境变化(如物体滑落),触发回溯算法重新规划。通过强化学习训练策略评估网络(Policy Evaluation Network),量化不同子任务的成功概率,指导搜索方向。
4.运动控制优化
1. 物理感知的动作生成
- 多模态指令解析:采用BERT-wwm模型理解自然语言中的物理约束(如“缓慢放置”“避免碰撞”),提取关键词(如“速度<0.2m/s”“接触力<5N”)作为控制参数。
- 阻抗控制策略:设计两级控制器:高层基于强化学习生成目标关节角度,底层使用阻抗控制实现柔顺运动。例如,抓取易碎物体时,高层输出“指尖接触角度30°”,底层通过PD控制器调节接触力。
-
2. 强化模仿学习框架
- 专家轨迹数据集构建:通过遥操作采集人类示范数据(如行走、装配),使用运动捕捉系统标注关节角度和末端位姿,构建包含10万+样本的仿真数据集。
-
3. 实时动态适应
- 在线模型更新:部署增量学习框架,当检测到新环境特征(如地面摩擦系数突变)时,使用KL散度约束的参数更新策略,避免灾难性遗忘。
- 传感器融合:融合IMU、激光雷达和视觉SLAM数据,构建环境动态模型。例如,在湿滑地面,通过IMU检测到滑移率>15%时,自动降低步态速度并增大支撑相时长。
策略优化算法:采用PPO+HER(Hindsight Experience Replay)算法,将稀疏奖励(如任务完成)转化为密集奖励(如接近目标物体+0.1分/步)。引入课程学习,从简单任务(直线行走)逐步过渡到复杂地形(楼梯、碎石地)。
四、前沿挑战与突破方向
-
统一表征与跨模态对齐
需构建统一的多模态表征空间,解决视觉、语言、动作数据的语义鸿沟。例如,CLIP引导的对比学习可对齐不同模态的语义分布。 -
实时性与计算效率
探索神经符号混合架构,将符号推理(如任务规划)与神经网络(如运动控制)解耦,在边缘设备上实现高效并行计算。 -
人机协作安全机制
开发动态权限管理系统,根据环境状态调整机器人自主决策层级。例如,在人类接近时切换至安全模式,限制高速动作。
总结
大模型驱动的具身智能技术栈正从“单一任务优化”向“通用能力涌现”演进,其核心在于通过多模态融合、分层决策架构和轻量化部署实现物理世界的强交互。未来突破需聚焦于统一表征学习、实时安全控制和人机协作范式,以推动具身智能从实验室走向规模化落地。