一、简述
K均值聚类:
1.在数据集中随机选择K个数据用来做K个聚类的初始中心
2.各个数据根据他们到每个聚类中心的距离选择中心最近的聚类分配到其中。
3.重新计算各个聚类中的所有数据的平均值,并将得到的结果作为新的中心;
4.重复上述操作直至聚类中心不再发生变化或达到最大迭代次数,停止迭代。
二、代码
clear
clc
%初始化数据
point = randi([-50, 50], 100, 3);
%计算数据个数
n = size(point, 1);
%聚类个数
k = 5;
%维度
q = size(point, 2);
%最大迭代次数
G = 100;
%记录各类的中心
class_center = zeros(k, q);
%记录各类的数据个数
class_count = zeros(1, k);
%记录各点的类名
class_point = zeros(n, 1);
%记录上一代各类的中心
pre_class_center = zeros(k, q);
%初始化各类的第一项数据与中心坐标
index = randperm(n, k);
for i = 1 : k
class_center(i, :) = point(index(i), :);
class_point(index(i)) = i;
end
%迭代
for iter = 1 : G
%遍历所有数据
for i = 1 : n
dis = zeros