数学建模:MATLAB K均值聚类

一、简述

K均值聚类:

1.在数据集中随机选择K个数据用来做K个聚类的初始中心

2.各个数据根据他们到每个聚类中心的距离选择中心最近的聚类分配到其中。

3.重新计算各个聚类中的所有数据的平均值,并将得到的结果作为新的中心;

4.重复上述操作直至聚类中心不再发生变化或达到最大迭代次数,停止迭代。

二、代码

clear
clc

%初始化数据
point = randi([-50, 50], 100, 3);


%计算数据个数
n = size(point, 1);
%聚类个数
k = 5;
%维度
q = size(point, 2);
%最大迭代次数
G = 100;

%记录各类的中心
class_center = zeros(k, q);
%记录各类的数据个数
class_count = zeros(1, k);
%记录各点的类名
class_point = zeros(n, 1);
%记录上一代各类的中心
pre_class_center = zeros(k, q);

%初始化各类的第一项数据与中心坐标
index = randperm(n, k);
for i = 1 : k
    class_center(i, :) = point(index(i), :);
    class_point(index(i)) = i;
end

%迭代
for iter = 1 : G
    %遍历所有数据
    for i = 1 : n
        dis = zeros
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值