原理概述
支持向量机原理:找到一个超平面将样本分成两类,并且间隔最大
本质是在n维的数据中设计一个最优化的n-1维超平面去划分不同类别的数据,量化两类数据差异的方法。
区分不同类别的数据的平面为决策超平面;分为两类的数据分别位于正超平面和负超平面。
硬间隔是两个决策边界之间的距离,求解最优超平面本质就是找到一个最大硬间隔的超平面;硬间隔不允许出现异常的点,决策边界与决策超平面之内没有数据时间隔为硬间隔。
软间隔具备一定的容错率,能够允许数据样本中异常值的出现,寻找最大软间隔即为找到硬间隔与样本数据中异常值的损失的最大差值。引入损失因子,平衡间隔距离和错误大小。
当样本数据在原始空间线性不可分时,引入核函数(维度转换函数),将原始输入空间映射到新的特征空间(即提高样本的维度),使得原本线性不可分的样本在核空间可分。进而在高维度下求解SVM模型,找到对应的分隔超平面
找到样本数据中位于决策边界的两个点,将其所在位置的约束条件转化为向量点积形式,
决策超平面上任取两个点,同理将所在位置的约束条件转化为点积形式。
联立可得到最大间隔为两决策边界上的点连接组成的向量乘与决策超平面垂直的夹角的余弦值。
所有正超平面上的数据点均满足W 1 X 1 + W 2 X 2 + . . . + W n X n + B > = 1,
所有负超平面上的数据点均满足W 1 X 1 + W 2 X 2 + . . . + W n X n + B < = − 1
则问题可转化为在约束条件下的求最值的问题。
利用拉格朗日乘数法将约束条件转化为等式进而求解极值,最后求解得到最终的决策超平面。