使用 CUDA API 实现多 GPU 实例

189 篇文章 ¥59.90 ¥99.00
本文介绍了如何使用 CUDA API 在机器学习和深度学习中实现多 GPU 计算。通过cudaSetDevice初始化GPU,结合cudaMemcpy进行数据传输,以及定义kernel函数在每个GPU上执行计算,实现了多GPU的并行处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用 CUDA API 实现多 GPU 实例

在机器学习和深度学习领域,大多数任务需要大量的计算资源。为了提高计算能力,使用多个 GPU 是一个常见的解决方案。在本文中,我们将介绍如何使用 CUDA API 来实现多个 GPU 的并行计算。我们将使用 CUDA 11.3 和 NVIDIA GeForce RTX 3060 Ti GPU。

首先,让我们看一下如何初始化多个 GPU。CUDA API 提供了 cudaSetDevice 函数来选择一个 GPU 设备。我们可以使用这个函数来初始化多个 GPU。例如,以下代码初始化了两个 GPU:

#include <stdio.h>
#include <cuda_runtime_api.h>

int main() {
  int num_devices;
  cudaGetDeviceCount(&num_devices);

  for (int i = 0; i < num_devices; ++i) {
    cudaSetDevice(i);
    printf("Initialized device: %d\n", i);
  }

  return 0;
}

使用上面的代码,我们可以打印输出以下内容:

Initialized device: 0
Initialized device: 1

现在我们已经初始化了多个 GPU 设备并选择了它们。接下来,我们需要将数据分发到多个 GPU 上。CUDA API 提供了 cudaMemcpy 函数来实现主机和设备之间的数据传输。然而,在多 GPU 的情况下,我们需要

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值