Exponential Linear Units(ELU)激活函数及其在R语言中的可视化

70 篇文章 ¥59.90 ¥99.00
本文介绍了Exponential Linear Units(ELU)激活函数的数学定义,探讨了其在深度学习中解决梯度消失问题的优势,并通过R语言提供了源代码实现及可视化过程,展示ELU函数在正负输入值时的输出特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Exponential Linear Units(ELU)激活函数及其在R语言中的可视化

激活函数在神经网络中扮演着重要的角色,它们引入非线性性质,使得神经网络能够学习和表示更复杂的函数。Exponential Linear Units(ELU)是一种常用的激活函数之一,它在负值区域呈指数级增长,可以有效地解决梯度消失问题,并且在一些深度神经网络任务中表现优秀。

本文将介绍ELU激活函数的数学定义,并使用R语言编写源代码,通过可视化展示ELU函数的特性。

首先,让我们来看一下ELU激活函数的数学定义:

ELU(x) =
x, if x >= 0
alpha * (exp(x) - 1), if x < 0

其中,x是输入值,alpha是一个可调节的超参数,通常取一个较小的正值。当x大于等于0时,ELU函数的输出等于输入值x;当x小于0时,ELU函数的输出为alpha乘以指数函数的值减去1。

接下来,我们使用R语言编写代码来实现ELU激活函数及其可视化。

# 导入必要的库
library(ggplot2)

# 定义ELU激活函数
elu <- function(x, alpha = 1.0) {
  ifelse(x >= 0, x, al
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值