LLaMA-Factory环境安装-重点总结

问题:在使用官网介绍的博客,进行安装,比较顺利。只不过,在需要推理加速时,UI界面上,给出的选项所支持的FlashAttention-2和Unsloth,不好实现。在进行一系列的调整,总结如下:

想要同时实现FlashAttention-2和Unsloth推理加速的环境安装方式:

以Ubuntu22.04 RTX4090 24GB为例:

1. 系统配置:CUDA版本选择12.2.x,因为高版本的flash-attn库不提供12.1版本的安装包:

## cuda 
export PATH=/usr/local/cuda-12.2/bin:$PATH
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-12.2/lib64

2. 虚拟环境创建:python版本选择3.10.x,使用官方推荐的安装方式:

conda create -n llama_factory python=3.10 -y

3. 首先安装LLaMA-Factory官方提供的环境安装内容:

pip install -e .[torch,metrics,bitsandbytes]

备注:torch版本为2.3.x,后续根据变化调整为对应版本

4. 然后安装flash-attn库,版本号含有cu122torch2.3cxx11abiFALSE:

pip in
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值