Prime Path
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 30671 Accepted: 16660
Description
The ministers of the cabinet were quite upset by the message from the Chief of Security stating that they would all have to change the four-digit room numbers on their offices.
— It is a matter of security to change such things every now and then, to keep the enemy in the dark.
— But look, I have chosen my number 1033 for good reasons. I am the Prime minister, you know!
— I know, so therefore your new number 8179 is also a prime. You will just have to paste four new digits over the four old ones on your office door.
— No, it’s not that simple. Suppose that I change the first digit to an 8, then the number will read 8033 which is not a prime!
— I see, being the prime minister you cannot stand having a non-prime number on your door even for a few seconds.
— Correct! So I must invent a scheme for going from 1033 to 8179 by a path of prime numbers where only one digit is changed from one prime to the next prime.
Now, the minister of finance, who had been eavesdropping, intervened.
— No unnecessary expenditure, please! I happen to know that the price of a digit is one pound.
— Hmm, in that case I need a computer program to minimize the cost. You don’t know some very cheap software gurus, do you?
— In fact, I do. You see, there is this programming contest going on… Help the prime minister to find the cheapest prime path between any two given four-digit primes! The first digit must be nonzero, of course. Here is a solution in the case above.
1033
1733
3733
3739
3779
8779
8179
The cost of this solution is 6 pounds. Note that the digit 1 which got pasted over in step 2 can not be reused in the last step – a new 1 must be purchased.
Input
One line with a positive number: the number of test cases (at most 100). Then for each test case, one line with two numbers separated by a blank. Both numbers are four-digit primes (without leading zeros).
Output
One line for each case, either with a number stating the minimal cost or containing the word Impossible.
Sample Input
3
1033 8179
1373 8017
1033 1033
Sample Output
6
7
0
问题描述
每次把四位的素数改其中一位变到另一个四位的素数,最终使得n变成m,每次变化都要花费1英镑,求最少花费。
问题分析
没想到用的是搜索,只能说我写的还是太少了…
BFS。将数分解出四个数位,判断是否是素数,记录状态和步数,一直搜直到得到目标值。
c++程序如下
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<cmath>
using namespace std;
const int N=10;
int n,m,v[4];
bool visited[N][N][N][N];
struct num
{
int x[4],time;
}q,p;
bool prime(int);
void bfs();
int rew1(int*);
void rew2(int*,int);
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d %d",&n,&m);
bfs();
}
return 0;
}
bool prime(int x)
{
int i,j=(int)sqrt((double)(x));
for(i=2;i<=j;i++)
{
if(x%i==0)return false;
}
return true;
}
int rew1(int*p)
{
return p[0]*1000+p[1]*100+p[2]*10+p[3];
}
void rew2(int*am,int tm)
{
int i=3;
while(tm)
{
am[i]=tm%10;
tm/=10;
i--;
}
}
void bfs()
{
memset(visited,0,sizeof(visited));
rew2(q.x,n);
rew2(v,m);
q.time=0;
visited[q.x[0]][q.x[1]][q.x[2]][q.x[3]]=1;
queue<num>Q;
Q.push(q);
while(!Q.empty())
{
q=Q.front();
Q.pop();
if(q.x[0]==v[0]&&q.x[1]==v[1]&&q.x[2]==v[2]&&q.x[3]==v[3])
{
printf("%d\n",q.time);
while(!Q.empty()) Q.pop();
return;
}
int i,j;
for(i=0;i<4;i++)
{
for(j=0;j<=9;j++)
{
if(i==0&&j==0)continue;
p=q;
p.x[i]=j;
if(!visited[p.x[0]][p.x[1]][p.x[2]][p.x[3]]&&prime(rew1(p.x)))
{
visited[p.x[0]][p.x[1]][p.x[2]][p.x[3]]=1;
p.time++;
Q.push(p);
}
}
}
}
printf("Impossible\n");
}