自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 为什么工程数据文件喜欢用csv(分隔符号)而不是xlsx格式?

CSV格式是因为这是。

2025-06-18 09:52:39 224

原创 批量大小(batch size)为什么会影响训练结果?

批量大小(batch size)不会导致某些样本没被训练到,但是会影响训练过程和最终结果的几个方面:(假设有6000个样本)在一个完整的训练周期(epoch)中,所有样本都会被训练到,不存在样本遗漏的问题。批量只是决定了网络权重更新的粒度和频率。这种不同的训练动态会导致优化过程遵循不同的路径,即使最终都处理了相同的样本,也可能到达参数空间中的不同位置,从而产生性能差异。

2025-04-25 21:09:15 698

原创 什么是下采样(Downsampling)?

是信号处理和图像处理中的一个基本概念,也广泛应用于深度学习中。它指的是减少数据采样率的过程,从而降低数据的分辨率。下采样本质上是一种数据压缩技术,通过减少数据点的数量来降低数据的维度,同时尽量保留重要信息。选择每个区域中的最大值作为该区域的代表。在卷积神经网络中,通过池化层(如。

2025-04-25 17:16:56 327

原创 markdown语言解释CNN不同卷积层之间的逻辑关系

实际工程中,我们通常通过堆叠多个小卷积核(如3×1)来获得大的感受野,而不是直接使用一个大卷积核(如5×1或7×1),因为这样可以减少参数数量,同时引入更多的非线性变换(每层卷积后都有激活函数)。假设有一个两层卷积核的CNN,第一层卷积核和第二层卷积核指的是网络中计算的先后顺序或者说是数据流经网络的路径。这就是感受野随网络深度增加而扩大的原理。依此类推,第一层的完整输出序列为 [o1, o2, o3, o4, o5, o6, o7]:一个时间序列 [a, b, c, d, e, f, g, h, i]

2025-04-25 10:56:33 303

原创 感受野的计算过程

假设我们有一个输入序列 [a, b, c, d, e, f, g, h],第一层使用3×1的卷积核。这种叠加效应使得深层网络能够"看到"更大范围的输入数据,从而学习更复杂的模式。第二层的每个输出点会受到第一层输出中连续3个点的影响。所以第二层的感受野 = 3 + (3 - 1) = 5。现在,第二层同样使用3×1的卷积核,处理第一层的输出。所以第一层的每个输出点的感受野是3。这就是为什么说第二层的感受野是5。间接受到了原始输入中。

2025-04-25 10:53:28 281

原创 什么是感受野?

感受野(Receptive Field)是深度学习中一个非常重要的概念,特别是在卷积神经网络(CNN)中。合理设计感受野的大小对于时间序列分析非常重要,它决定了模型能够捕捉多长时间范围内的模式和关联。简单来说,它表示输出特征的一个元素受输入数据中哪些元素的影响。池化操作会使感受野进一步扩大,因为它压缩了特征图的空间尺寸。随着层数增加,感受野会指数级扩大。感受野指的是神经网络中。

2025-04-25 10:52:26 681

原创 z-score 标准化后的数据与正态分布没有必然关系

z-score 让数据“零均值、单位方差”,但并不会“强制”它变成正态分布。

2025-04-24 18:05:11 195

原创 为什么神经网络要把标签集Y处理成categories,直接用double性质不行吗

会把输出当成对各个类别的预测分布来处理,而它期望看到的是一个。,训练函数会把它当成回归目标,或者报错说。在分类任务中,类别之间没有大小顺序,用。标签必须是离散的类别(

2025-04-24 18:02:26 940

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除