Linux系统管理(十七)——配置英伟达驱动、Cuda、cudnn、Conda、Pytorch、Pycharm等Python深度学习环境


前言

深度学习和大语言模型的部署不免会用到Linux系统,在本章中将详细介绍配置英伟达驱动、Cuda、cudnn、Conda、Pytorch、Pycharm等Python深度学习环境,为支持深度学习和大语言模型运行提供支持。

安装驱动

查看是否已经安装了驱动
通过以下命令查看是否安装好了驱动

nvidia-smi

如果没有安装驱动,会显示类似信息,我们可以看到不同的ubuntu版本有不同的驱动版本
在这里插入图片描述
查看系统版本

lsb_release -a

在这里插入图片描述
安装驱动
根据对应的版本,执行安装命令即可

sudo apt install nvidia-utils-550-server

然后重新查看一下显卡信息

nvidia-smi

显示以下信息说明驱动安装成功
在这里插入图片描述

下载安装Cuda

首先从官网选取合适的系统
官网地址:https://developer.nvidia.com/cuda-downloads
在这里插入图片描述
选好后往下拉依次执行以下命令
在这里插入图片描述

wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt-get update
sudo apt-get -y install cuda-toolkit-12-8
sudo apt-get install -y nvidia-open
sudo apt-get install -y cuda-drivers

编辑环境变量

用以下命令打开环境变量

sudo vim ~/.bashrc

在后面添加以下信息

export</
<think>好的,我现在需要帮用户解决如何安装深度学习软件的问题。用户提到了想查找安装方法或指南,可能对步骤不太清楚,或者之前遇到过困难。首先,我应该参考用户提供的引用内容,看看里面有哪些有用的信息。 引用[1]和[2]都是关于Ubuntu系统下安装深度学习环境的,特别是英伟达驱动CUDAcuDNN配置。引用[3]和[4]提到了AnacondaPyTorchPyCharm,以及Windows系统的安装步骤。引用[5]则涉及Anaconda环境路径配置问题。用户可能需要跨平台的信息,或者针对某个特定系统的指导。 接下来,我需要整理出通用的安装步骤,同时区分不同操作系统的差异。比如,安装显卡驱动CUDALinux和Windows上步骤不同。AnacondaPyTorch的安装可能比较通用。另外,用户可能对配置环境变量或处理依赖问题有疑问,需要详细说明。 还需要考虑用户可能的痛点,比如驱动版本兼容性、CUDAcuDNN的匹配、conda环境创建等。要提醒用户注意版本匹配,并提供验证安装是否成功的方法,比如运行简单的Python代码测试PyTorch是否能识别GPU。 另外,用户提供的引用中有提到一些常见错误,比如未自动添加Anaconda环境变量,这时候需要手动配置。这部分需要包含在注意事项里,帮助用户避免常见陷阱。 最后,生成相关问题,可能涉及性能优化、环境管理、不同框架比较等,帮助用户进一步学习。整个回答要结构清晰,步骤明确,让用户能一步步跟着操作,同时提供参考链接供深入查阅。</think>### 深度学习软件安装方法(以PyTorch为例) #### 一、安装前准备 1. **操作系统选择** - Linux(推荐Ubuntu 20.04/22.04)或Windows 10/11 - 确认系统已更新至最新版本 2. **硬件要求** - NVIDIA显卡(需支持CUDA,可通过`nvidia-smi`命令查看显卡信息)[^1][^2] 3. **依赖项安装** ```bash # Ubuntu系统示例 sudo apt update && sudo apt install -y build-essential python3-dev ``` #### 二、核心组件安装流程 1. **安装NVIDIA驱动** - *Ubuntu*: 通过`软件和更新`→`附加驱动`选择推荐版本 - *Windows*: 从[NVIDIA官网](https://www.nvidia.com/Download/index.aspx)下载对应驱动 - 验证:`nvidia-smi`显示显卡信息即为成功[^2] 2. **CUDA工具包安装** ```bash # 选择与驱动兼容的CUDA版本(如11.8) wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run sudo sh cuda_11.8.0_520.61.05_linux.run ``` Windows用户需下载exe安装包并配置环境变量[^3][^4] 3. **Anaconda环境配置** ```bash wget https://repo.anaconda.com/archive/Anaconda3-2023.03-Linux-x86_64.sh bash Anaconda3-2023.03-Linux-x86_64.sh ``` *注意勾选`Add Anaconda to PATH`选项,若未自动配置需手动添加环境变量[^5]* 4. **创建虚拟环境** ```bash conda create -n pytorch_env python=3.9 conda activate pytorch_env ``` #### 三、深度学习框架安装 1. **PyTorch安装** ```bash # 通过官网命令选择对应CUDA版本(https://pytorch.org/) conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia ``` 2. **验证安装** ```python import torch print(torch.__version__) # 应显示版本号如2.0.1 print(torch.cuda.is_available()) # 应返回True ``` #### 四、IDE配置PyCharm示例) 1. 下载并安装PyCharm Community Edition 2. 创建新项目时选择`先前配置conda环境` 3. 指定解释器路径为`~/anaconda3/envs/pytorch_env/bin/python`[^3]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

艾醒(AiXing-w)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值